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Capsule Summary 

Development of better water management tools is the focus of the GRAPEX (Grape Remote 

sensing Atmospheric Profile and Evapotranspiration eXperiment) project. An overview of 

GRAPEX and preliminary results are presented. 

 

ABSTRACT 

Particularly in light of California’s recent multi-year drought, there is a critical need for accurate 1 

and timely evapotranspiration (ET) and crop stress information to ensure long-term sustainability 2 

of high-value crops. Providing this information requires the development of tools applicable 3 

across the continuum from sub-field scales to improve water management within individual 4 

fields up to watershed and regional scales to assess water resources at county and state levels. 5 

High value perennial crops (vineyards and orchards) are major water users and growers will need 6 

better tools to improve water use efficiency to remain economically viable and sustainable 7 

during periods of prolonged drought. In order to develop these tools, government, university, and 8 

industry partners are evaluating a multi-scale remote sensing-based modeling system for 9 

application over vineyards. During the 2013 to 2017 growing seasons, the GRAPEX (Grape 10 

Remote sensing Atmospheric Profile and Evapotranspiration eXperiment) project has collected 11 

micrometeorological and biophysical data within adjacent Pinot noir vineyards in the Central 12 

Valley of California. Additionally, each year ground, airborne and satellite remote sensing data 13 

were collected during Intensive Observation Periods (IOPs) representing different vine 14 

phenological stages. An overview of the measurements and some initial results regarding the 15 

impact of vine canopy architecture on modeling ET and plant stress are presented here. 16 

Refinements to the ET modeling system based on GRAPEX are being implemented initially at 17 

the field scale for validation and then will be integrated into the regional modeling toolkit for 18 

large area assessment.  19 

 20 

 21 
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INTRODUCTION 22 

As is the case in many parts of the world, agricultural production in California faces the dual 23 

challenge of growing demand for limited water resources and increasing interannual variability 24 

in rainfall and water availability. As a result, both the state and its agricultural community 25 

recognize the need to develop sustainable long-term water management strategies. For example, 26 

in response to the recent multi-year drought that has severely depleted both surface and 27 

groundwater stores, the California Department of Water Resources enacted the Sustainable 28 

Groundwater Management Act (SGMA) in 2014, mandating measures to curtail the severe 29 

overdraft of water in regions dependent on groundwater resources. At the same time, many in the 30 

agricultural community have taken proactive steps to develop and implement robust water 31 

management plans that both reduce consumptive water use and enhance resilience against future 32 

droughts and water shortages. As an example, producers of wine grapes – a California crop 33 

valued at nearly $6B annually – have actively sought tools to better monitor crop water status 34 

and manage water use. 35 

Currently, the irrigation management decisions for many California crops are based on a 36 

combination of in-situ observations of soil moisture, remote sensing-based estimates of 37 

Normalized Difference Vegetation Index (NDVI), and the application of the FAO crop model 38 

using crop coefficients that have been tuned for specific crops (Allen et al., 1998). Unfortunately, 39 

these methods are not sufficiently robust, particularly for highly structured canopies such as 40 

vineyards and tree orchards. They cannot accurately separate crop and the combined interrow 41 

soil andcover crop water use and the crop coefficients are not easily adjustable for stressed 42 

conditions (e.g., Ting et al., 2016). As a result, significant errors in the timing and amount of 43 

irrigation relative to crop water needs have led to an over-prescription of irrigation applications. 44 

Moreover, later in growing season when deficit irrigation is preferred to conserve water, ensure 45 

crop quality, or facilitate harvest, the current approach cannot reliably determine the degree of 46 
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crop stress. This has ledto the development thermal-based methods for irrigation scheduling 47 

(e.g., Bellvert et al., 2015; 2016) 48 

In 2012, researchers from E&J Gallo Winery approached scientists with the USDA 49 

Agricultural Research Service (USDA-ARS) Hydrology and Remote Sensing Laboratory 50 

seeking advice on practical methods for using remote sensing from satellites or airborne systems 51 

to guide irrigation decisions. Critical decisions in wine grape production include when to begin 52 

irrigating in the spring, and timing and amount of water to apply during the growing season that 53 

balances vine health with carefully timed periods of mild stress to improve berry quality for wine 54 

production. Spatially detailed information regarding vine stress variations across the field is also 55 

needed to ensure the judicious application of water only where it is needed. The scientists at E&J 56 

Gallo Winery realized that accurate maps of evapotranspiration (ET) at daily to weekly 57 

increments and sub-field spatial resolutions could help both reduce water use and enhance crop 58 

quality.  59 

This collaboration has evolved into the ongoing GRAPEX (Grape Remote sensing 60 

Atmospheric Profile and Evapotranspiration eXperiment) project, and has expanded to include 61 

personnel from other USDA-ARS labs, NASA, universities, and industry. The ultimate goal of 62 

the project is to provide wine grape producers and, in the longer term, fruit and nut orchard 63 

growers with the tools needed to generate high-resolution ET data that can be used to guide 64 

water management decisions. These tools will have the advantage over the current “business as 65 

usual” approach for assessing water needs by being applicable year-round and by providing 66 

water use information with higher spatial and temporal detail. The tools will also differentiate 67 

between the water used by the grass cover crop, active early in the growing season, with water 68 

uptake by the grapevines themselves. In addition, the project will demonstrate the utility of using 69 

very-high resolution imagery collected via Unmanned Aerial Vehicles (UAVs) at critical times 70 
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during the growing season to assess in-field variability in vine condition and facilitate precision 71 

management.  72 

The Two-Source Energy Balance (TSEB) developed by HRSL scientists and colleagues 73 

takes advantage of land-surface temperature (LST) measurements from thermal infrared (TIR) 74 

imagery to monitor ET, and has the potential to provide additional information regarding crop 75 

stress and soil moisture conditions. The model framework is well-suited to the goals of the 76 

GRAPEX project because it partitions evaporative fluxes between the crop canopy and substrate 77 

surface (in this case, the soil or cover crop between the vine rows). TSEB can also be run across 78 

a range of spatial scales: from sub-field resolutions using airborne data, to larger scales using 79 

satellite imagery from both polar orbiting and geostationary platforms. Nonetheless, the unique 80 

canopy architecture of vineyards and orchards, which is characterized by strongly clumped 81 

vegetation separated by significant interrow spaces containing bare soil or a cover crop, leads to 82 

several intriguing modeling and measurement challenges. First, the ET models must be able to 83 

partition the bulk moisture flux and crop stress derived from remote sensing-based products 84 

(typically at resolutions of 30m or coarser) between the vine canopy and the interrow - 85 

environments that will likely have very different thermal characteristics and atmospheric 86 

couplings. Also, the structural characteristics of the canopy can significantly influence the 87 

turbulent flow and exchange of heat and water vapor from the vineyard; for example, by 88 

imposing dependencies on wind direction. Finally, radiation transport through structured 89 

canopies can be complex, leading to highly variable shadowing and soil surface fluxes that can 90 

confound simple modeling approaches.  91 

To address the effects of these unique characteristics, the standard form of the TSEB model 92 

will require modification to optimize its performance over highly-structured crops. Identifying 93 

the key factors affecting exchange processes over vineyards will guide the refinements to the 94 

remote sensing-based modeling scheme. This project uses in-situ data to investigate the physical 95 
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processes controlling turbulent transport and exchange in highly-structured canopies. The 96 

GRAPEX project also seeks to use ground-based and UAV data to improve the model 97 

parameterization and design for routine application using satellite imagery. One advancement 98 

under investigation is the fusion of ET estimates retrieved using satellite data with differing 99 

spatial and temporal resolutions to generate “ET datacubes”, i.e. a gridded time-series dataset 100 

with both high spatial (30 m) and temporal resolutions (daily time steps), which can be used to 101 

inform daily water management decisions at field scales.  102 

This paper provides an overview of the measurements collected during GRAPEX along with 103 

some preliminary analyses conducted with the data collected to date. We also describe the initial 104 

evaluation of the modeling system and discuss plans for future research. 105 

SITE AND DATA DESCRIPTION 106 

Study site and vineyard management 107 

The data used to refine and evaluate the models were collected in two Pinot noir blocks 108 

located within Borden Ranch vineyard near Lodi, CA (38.29 N 121.12 W), in Sacramento 109 

County (see Fig. 1), as part of the GRAPEX project. The two adjacent vineyards differ in the age 110 

and maturity of the vines, with the north and south vineyards being 6 and 3 years old, 111 

respectively, at the beginning the 2013 growing season. The management of the two vineyards – 112 

for example, the timing and amount of irrigation, pruning activities, cover crop, and application 113 

of agrochemicals – can also differ between blocks and from season to season. Intensive 114 

observation Periods (IOPs) described below occurred at different cover crop and vine 115 

phenological stages, namely flowering (IOP1), fruit set (IOP2) and veraison (IOP3).  116 

In both fields, the configuration of the trellising system and interrow (Fig. 1) is the same. The 117 

vine trellises are 3.35 m apart and run east-west. There is a vine planted every 1.5 m, with the 118 

two main vine stems attached to the first cordon at a height of 1.45 m above ground level (agl). 119 

There is a second cordon at 1.9 m agl where vine shoots are managed. Typically, the vines reach 120 
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a maximum height of between 2.0 m and 2.5 m agl during the growing season with the vine 121 

biomass concentrated in the upper half of the total canopy height. The typical vine canopy width 122 

is nominally 1 m mid-season. Pruning of the vines is mainly performed to remove shoots 123 

growing significantly into the interrow. However, the amount and timing of pruning has varied 124 

year-to-year. 125 

Drip irrigation lines run along the base of the trellis at about 30 cm agl with two drip emitters 126 

(4 liters/hour) between each vine. In the interrow, the cover crop (a mixture of grasses) is 127 

approximately 2 m in width with bare soil on either side (i.e. berm) approximately 0.7 m in 128 

width. The cover crop is typically mowed 2-3 times per year and senesces by early June. The 129 

berm beneath the vines is kept bare through the use of an herbicide.  130 

Continuous measurements 131 

Beginning with the 2013 growing season, surface fluxes (including ET) and environmental 132 

conditions have been measured continuously at both vineyards using eddy covariance 133 

micrometeorological systems. These sensor systems are summarized in a schematic and photo of 134 

the tower configuration in Figure 2. The tower at each site is instrumented with an infrared gas 135 

analyzer (EC150, Campbell Scientific, Logan, Utah, USA1) and a sonic anemometer (CSAT3, 136 

Campbell Scientific) co-located at 5 m agl to measure the concentrations of water and carbon 137 

dioxide and wind velocity, respectively. During the growing season, three additional sonic 138 

anemometers mounted at 2.50 m, 3.75 m, and 8 m agl are included on the tower to investigate 139 

effects of the canopy structure on near-surface turbulence. Other measurements at the tower 140 

include the full radiation budget using a four-component net radiometer (CNR-1, Kipp and 141 

Zonen, Delft, Netherlands) mounted at 6 m agl, incident and reflected photosynthetically active 142 

radiation (PAR) measured via quantum sensors (LI-190, LI-COR, Lincoln, Nebraska, USA) also 143 

                                                 
1 The mention of trade names of commercial products in this article is solely for the purpose of providing specific 

information and does not imply recommendation or endorsement by the US Department of Agriculture. 
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mounted at 6 m agl, air temperature and water vapor pressure measured using three temperature 144 

and humidity probes (HMP45C, Vaisala, Helsinki, Finland) mounted at 2.5 m, 5 m, and 8 m agl, 145 

and precipitation measured using a tipping bucket rain gauge (TE-525, Texas Electronics, Dallas, 146 

Texas, USA) mounted at 5.5 m agl.  Both vine canopy and interrow surface temperatures are 147 

measured using a pair of thermal infrared thermometers (SI-111, Campbell Scientific) mounted 148 

at 2.5 m agl.  149 

Subsurface measurements include the soil heat flux measured via a cross-row transect of five 150 

plates (HFT-3, Radiation Energy Balance Systems, Bellevue, Washington, USA) buried at a 151 

depth of 8 cm, soil temperature measured via thermocouples buried at a depth of 2 cm and 6 cm, 152 

and soil moisture content measured via a soil moisture probe (SDI-12 HydraProbe, Stevens 153 

Water Monitoring Systems, Portland, OR, USA) buried at a depth of 5 cm. In addition, 154 

beginning in 2016, a second array of sensors were installed to provide more detailed spatial 155 

sampling of soil heat flux (HFT-3, Radiation Energy Balance Systems), water content 156 

(HydraProbe, Stevens Water Monitoring Systems) and temperature under the vine canopy and 157 

across the interrow. This array consisted of 11 sets of sensors deployed in a hexagonal pattern 158 

centered at the mid-row and extended to the vines on either side. An additional profile of 159 

temperature, water content, and thermal properties was deployed with the array in order to 160 

facilitate the calorimetric approach for determining soil heat flux.  161 

Profiles of soil water content and temperature were also measured under the vines at three 162 

locations near each flux tower (Fig. 2) using soil moisture temperature probes (HydraProbe, 163 

Stevens Water Monitoring Systems) at depths of 30 cm, 60 cm, and 90 cm. In the north vineyard 164 

there were also soil moisture profile measurements at six locations using Decagon (MPS-2 165 

Decagon Pullman Washington, USA) dielectric water potential sensors at depths of 166 

approximately 5, 50, 90 and 125 cm, with two Decagon 10HS large soil moisture sensors at 45 167 
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cm depth.  Additionally, Decagon model G2 and G3 passive capillary lysimeters were installed 168 

at two interrow locations (Fig. 2) in the north vineyard for estimating interrow water use.  169 

Sap flow measurements (TDP30, Dynamax Inc., Houston, TX, USA) at 5 locations in both 170 

the north and south vineyards (see Figure 2) are collected to estimate the spatial and temporal 171 

variability of vine water use and status. The sapflow measurements that lie within the eddy 172 

covariance flux footprint are being used together with eddy covariance data in an attempt to 173 

separate interrow versus vine plant water use. The passive capillary lysimeter measurements in 174 

the interrow will also be helpful in this separation.  175 

In 2015 and 2016 growing seasons, flow meter sensors (manufactured by Mark Battany, 176 

University of California Cooperative Extension Viticulture Advisor) for monitoring irrigation 177 

(initiation and duration) were used to estimate amount of irrigated water that was applied in both 178 

vineyards.  179 

Vine and cover crop development through the growing season as well throughout the whole 180 

year were visually tracked using phenocams located across the road on the east side (see Fig. 2) 181 

starting in 2013 at the north vineyard and starting in 2015 at the south vineyard. A video of the 182 

daily photos collected in the morning (~0900 local time) for the years 2014-2016 for the north 183 

vineyard can viewed at https://www.ars.usda.gov/grapex/phenocam. Approximately 50 m due 184 

west of the flux towers in the north and south vineyard, instrumentation was deployed to measure 185 

the surface energy balance following the surface renewal (SR) approach (Paw U et al., 1995). 186 

The instruments included a 3D sonic anemometer (81000RE, R.M. Young Company, Traverse 187 

city, Michigan, USA), a 76 micrometer diameter Type E thermocouple (FW3, Campbell 188 

Scientific, Inc) and a net radiometer (NRLite, Kipp and Zonen), deployed at 2.5  m agl.  The SR 189 

station design is described in McElrone et al (2013). 190 

 191 

 192 
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Intensive Observation Periods 193 

Timing of IOPs 194 

Episodic and intensive data collections, called intensive observation periods (IOPs), were 195 

conducted at different vineyard phenological stages during the growing season (see Fig. 1b). In 196 

each growing season, the first IOP usually occurred in late April or early May after bud break 197 

(grape flowering stage) with low vine cover but significant cover crop biomass. Another IOP 198 

often occurred in early to mid-June at the start of the dry season, with rapidly growing vines and 199 

fruit (pre-veraison, or berry development stage) and cover crop going through senescence. A 200 

third IOP typically occurred in mid to late July or early August, with vines and fruit fully 201 

developed (veraison to post veraison stage) and cover crop fully senescent and now acting as a 202 

thatch layer. During this period the vines are still actively growing but, through pruning and 203 

ripening of the fruit, they are now in a later stage of development. By late August or early 204 

September each year, the vineyard grapes reached the required sugar content and were harvested. 205 

In 2014, a fourth IOP was conducted in late September after harvest to evaluate vine and 206 

interrow cover conditions. 207 

 208 

IOP biophysical observations 209 

 During the IOPs, measurements of leaf area index (LAI; LAI-2200 LI-COR, Lincoln, 210 

Nebraska, USA), leaf stomatal conductance, photosynthesis and leaf water potential were 211 

collected using either a LI-COR (LI6400, LI-COR) or PSP sensor (CIRAS-3, PSP Systems 212 

Amesbury, Massachusetts, USA) photosynthesis system and a pressure chamber (615, PMS 213 

Instrument Company, Albany, Oregon, USA) along transects across the vineyard (Figure 2) to 214 

determine variability in vine biomass, water use and stress. Multispectral measurements in the 215 

visible and near-infrared wavelengths, along with leaf-level hyperspectral measurements 216 

(FieldSpec 4 Spectroradiometer, ASD Inc., Boulder, Colorado, USA), were also collected so that 217 
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satellite and airborne multispectral retrievals could be related to in-situ canopy conditions. 218 

Multispectral (4-band) visible and near-infrared measurements using a CROPSCAN (MSR16R, 219 

CROPSCAN, Inc., Rochester, Minnesota) instrument mounted on a pole for measuring above the 220 

vine canopy were collected over vine and interrow areas as well as a gravel lot surrounding the 221 

vineyard garage and the fallow field separating north and south vineyards (see Figure 2). The 222 

reflectance values are being used to evaluate and calibrate the airborne and satellite spectral 223 

observations. At the sapflow sites (see Fig. 2), leaf level hyperspectral measurements were made 224 

for the same leaves used to measure plant conductance, photosynthetic activity, and leaf water 225 

potential to explore relationships between plant physiology and spectral response. 226 

IOP micrometeorological observations 227 

During the IOPs, measurements were also collected in the interrow region within the north 228 

and south vineyard flux tower footprints to establish micrometeorological conditions between the 229 

vine canopies, near the substrate surface. Solar radiation was measured at ground level to 230 

determine radiation divergence within the vine canopy. Specifically, solar radiation in the 231 

interrow was measured within 75 m of the flux towers during the IOPs using a transect of 5 to 8 232 

radiation sensors from Kipp and Zonen (CMP3 and CMP11, Kipp and Zonen)  Eppley (PSP, 233 

Eppley Laboratory Inc. Newport Rhode Island, USA) , and Apogee (SP 212, Apogee 234 

Instruments Inc. Logan,  Utah USA) installed at ground level.  Multiple radiometric temperature 235 

measurements of the top, east and south facing sides of the vine canopy and the interrow were 236 

collected. The two near-nadir viewing sensors at the canopy top (SI-1H1, Apogee Instruments 237 

Inc.) were pointed north and south, while two additional Apogee SI-1H1sensors were angled 90 238 

degrees viewing north and south sides of the vine canopy and two thermal-infrared sensors east 239 

facing at an oblique angle viewed the interrow cover crop and bare soil underneath the vines. In 240 

2015, micro-Bowen ratio systems (Holland et al, 2013) were deployed for the three IOPs. There 241 

were three micro-Bowen ratio systems located on the north and south facing locations under the 242 



12 

 

vine canopy sampling the bare soil strip and a third in the center of the interrow. Locations of 243 

these measurement sites for both the continuous measurements collected throughout the year and 244 

observations collected during IOPs are depicted in Figure 2.  245 

 246 

IOP UAV acquisitions 247 

Airborne high-resolution (<1m) remote sensing imagery was collected during several of the 248 

IOPs in 2013-2016 to evaluate and improve performance of TSEB applications at the satellite 249 

pixel scale (30m). In 2013, a manned aircraft collected imagery at nominally 0.1 m pixel 250 

resolution in the visible/near-infrared and 0.5 m in the thermal-infrared for 3 IOPs. A detailed 251 

description of the processing and analysis of the data is described in Ting et al. (2016).  252 

In the 2014-2016 growing season, we moved from manned to unmanned systems, which are 253 

easier to deploy and are increasingly used in agricultural monitoring. The UAV system used in 254 

GRAPEX and its sensors are described in detail at the USU Aggie Air website 255 

(http://aggieair.usu.edu/). During the IOPs, the UAV flew at a nominal altitude of 400 m agl, 256 

resulting in 0.15 m pixel resolution in the visible and near infrared bands and 0.60 m resolution 257 

in the thermal-infrared. Ground control points collected using a survey-grade Trimble RTK GPS 258 

with sub-centimeter absolute accuracy were used to georeference the imagery. Ground-based 259 

spectral and thermal-infrared measurements of distinct land surface features were used for image 260 

calibration. Atmospheric transmissivity was also collected and used to correct at-sensor 261 

radiances to surface values. 262 

The manned and unmanned aircraft were employed to capture microscale spatial information 263 

concurrent with Landsat overpasses during the IOPs, facilitating detailed comparisons between 264 

satellite and aerial information. In addition, both aerial systems were flown approximately an 265 

hour after sunrise and during the afternoon, thus providing the opportunity for a more complete 266 

description of energy fluxes over the diurnal cycle.  267 



13 

 

 268 

REMOTE SENSING OF EVAPOTRANSPIRATION 269 

Over the past decades, remote sensing approaches for mapping ET have advanced 270 

significantly (Kalma et al. 2008; Wang and Dickinson 2012), particularly surface energy balance 271 

methods using TIR observations of LST (Kustas and Anderson 2009). Using LST data from 272 

geostationary and polar orbiting satellites, or airborne imaging systems, the Atmosphere-Land 273 

Exchange Inverse (ALEXI) modeling framework and associated flux disaggregation technique 274 

(DisALEXI) can be used to map ET from global scales for regional water use assessments down 275 

to sub-field spatial scales for precision agricultural management (Anderson et al., 2011). Based 276 

on the Two-Source (soil and canopy) Energy Balance land-surface representation, 277 

ALEXI/DisALEXI provide estimates of E (evaporation) and T (transpiration) partitioning as 278 

well as total ET. Using a multi-sensor data fusion methodology, ALEXI/DisALEXI can provide 279 

daily ET estimates at field scale resolutions (Camalleri et al.2013). This modeling system is 280 

briefly described below. 281 

 282 

Two-Source Energy Balance (TSEB) model 283 

The TSEB land surface energy balance scheme was developed to explicitly account for the 284 

differences in aerodynamic coupling between the soil substrate and the canopy layer (Norman et 285 

al., 1995). Figure 3 illustrates the basic set of equations used in TSEB to solve for the energy 286 

balance of both the soil substrate and vegetation canopy layers. Key inputs are the surface 287 

radiometric temperature TRAD () at a view angle () and the canopy cover fraction (fC) which is 288 

related to the leaf area index. The system of equations for the energy balance of the soil/substrate 289 

and canopy are solved in parallel with the radiometric temperature balance equation in Figure 3, 290 

which partitions TRAD into effective soil (TS) and canopy (TC) temperatures. As part of this 291 

system, the soil (Rsoil) and canopy (Rcanopy) aerodynamic resistances are used compute to sensible 292 
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heat fluxes from the soil and canopy surfaces (HS and HC, respectively). These combine to yield 293 

the total sensible heat flux (H) determined by the temperature difference between the canopy air 294 

space TAC and the surface layer TA and associated surface layer aerodynamic resistance (Raero). 295 

The soil and canopy temperatures constrain the sensible heat fluxes, net radiation (RN) and soil 296 

heat flux (G) with the added initial estimate of canopy latent heat flux (LEC) or transpiration 297 

based on either the Priestley-Taylor (PT), Penman-Monteith (PM) or light-use efficiency (LUE) 298 

parameterization (see Kustas and Norman, 1999, Colaizzi et al., 2014; Anderson et al., 2008). 299 

Finally, the latent heat flux from the soil (LES) is computed as the residual flux.  300 

 301 

Regional implementation of the TSEB  302 

The TSEB land surface scheme is implemented within a regional model called the 303 

Atmosphere Land EXchange Inverse (ALEXI) model (Anderson et al., 1997, 2007). The 304 

regional ALEXI system exploits the time-differential morning surface temperature signal 305 

provided by geostationary satellites to generate coarse regional maps that are reasonably robust 306 

to errors in absolute (instantaneous) land surface temperature (LST) retrieval. The associated 307 

disaggregation tool (DisALEXI) uses higher resolution imagery from polar orbiting MODIS or 308 

Landsat LST or even airborne thermal data, to disaggregate ALEXI fluxes to finer spatial scales. 309 

These outputs, which have been validated against surface measurements, provide field scale 310 

estimates of crop water use and stress (Anderson et al., 2004; 2007; 2011; 2012). 311 

 312 

Multi-sensor data fusion 313 

The ALEXI/DisALEXI modeling system has been integrated within a data fusion 314 

methodology (see Fig. 4a) to combine approximately daily 1km MODIS retrievals with bi-315 

weekly Landsat (sharpened to 30m) resolution retrievals to produce ET datacubes with both high 316 

spatial (30m) and temporal (daily) resolution (Camalleri et al., 2013; 2014). The fusion is 317 
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performed using the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM; Gao 318 

et al., 2006). STARFM develops spatially distributed weighting factors describing the spectral 319 

and spatial relationship between an existing Landsat and MODIS image pairs which are then 320 

used to define the disaggregation weighting functions used with the MODIS images on days 321 

when Landsat data are not available. A new data fusion procedure under development will utilize 322 

higher resolution LST data from the VIIRS satellite (Fig. 4b). ET fusion experiments in different 323 

landcover types are described by Cammalleri et al. (2013, 2014), Semmens et al., (2016), Yang 324 

et al. (2017a, b), and Sun et al. (2017). 325 

 326 

ANALYSIS AND PRELIMINARY RESULTS  327 

Measurements 328 

Flux and LAI observations 329 

With the flux towers at the north and south vineyards separated by only a kilometer, there 330 

were no significant differences in the meteorological forcings; namely, radiation, rainfall, air 331 

temperature, vapor pressure deficit and wind speed. However, we do expect to see differences in 332 

surface energy balance components between the north and south vineyards due to differences in 333 

irrigation, vine maturity, leaf area, and biomass. 334 

Biomass variations are summarized by IOP in Figure 5, showing averages of ground 335 

measurements of vine and cover crop LAI over the years 2013-2016. The cover crop is most 336 

active in IOP1; however, sometimes over-irrigation results in lateral water flow into the interrow 337 

causing the cover crop to thrive even in June. Over this time period, the total LAI of both the 338 

combined vine and cover crop is on the order of 0.5 units higher in the north vineyard during 339 

IOP 2 (mid to late June) and IOP 3 (late July to early August). 340 

To more easily visualize and contrast the main temporal dynamics in the surface energy 341 

balance at the two sites, monthly daytime fluxes were computed from the daily observations, and 342 



16 

 

then these monthly fluxes were averaged over the period from 2013 to 2016 to generate normal 343 

flux curves associated with each site (Fig 6). These normal curves show little difference in net 344 

radiation (RN) between the two sites at the monthly timestep. However, it is apparent that the 345 

north vineyard (site 1) with greater biomass than the south (site 2) vineyard has lower sensible 346 

heat flux (H) and higher latent heat flux (LE) during the growing season. Most noteworthy is the 347 

decrease in H at site 1 during the period of peak incident solar radiation, which is also a period 348 

when air temperature and VPD are near their maximum. This is likely due to the higher biomass 349 

in site 1 (Fig. 5), with larger evaporative response to VPD and resulting in a depression in H. 350 

The normal G flux curves also show interesting temporal behavior, indicating bimodal peaks: 351 

one in March before the vine leaves have emerged, and the second in September after the vines 352 

have senesced. The higher values of G at site 1 during March is likely due to more frequent 353 

mowing of the cover crop in that field. Bud break normally occurs in mid to late March; 354 

consequently, there is very little if any influence on shading from the vines at that time.   355 

 356 

Soil moisture measurements 357 

Temporal variations in vine and cover crop biomass and associated rooting depths, along 358 

with irrigation and evaporative demand, impact patterns in the soil water profile. This is 359 

demonstrated in Figure 7, showing evolution in soil moisture observations at 30, 60 and 90 cm 360 

depths collected beneath a vine in north vineyard along with precipitation and irrigation events 361 

during 2016. The 30 and 60-cm sensors tend to be most responsive to rainfall which largely 362 

occurs in the fall, winter, and early spring, while during irrigation events starting in the late 363 

spring (May) and much more frequently starting in early summer (June), only the 30-cm shows a 364 

response to irrigation (and a few instances with the 60-cm). The response at 30-cm depth in the 365 

fall and winter may be caused in part by the interrow cover crop, which remains green and active 366 

during these periods. The 60-cm sensor variation in soil moisture is not as dynamic, while the 367 
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90-cm moisture sensor registers an increase in moisture after multiple precipitation events in the 368 

fall and early winter, presumably when the vines have undergone senescence. Interestingly, the 369 

highest moisture values are with the 90-cm sensor from March through May, a period with active 370 

cover crop water use and with vines in early development. There is a decline in moisture at all 371 

three depths over this time frame, but only the 30-cm sensor responds to the frequent irrigation 372 

events starting in June suggesting the vine root zone is mainly in the upper 30 cm. This pattern is 373 

similar to other years. 374 

 375 

Soil moisture-ET relationship 376 

Daily mean soil moisture from the three profile sensors averaged over all depths is compared 377 

to measured daily ET from the tower normalized by potential or reference ET (ETO) using the 378 

Penman-Monteith equation from FAO56 (Allen et al. 1998) in Figure 8. The daily data come 379 

from all four years (2013-2016) are plotted with different symbols indicating different vine 380 

phenological and seasonal stages or conditions. Although there is considerable scatter, an 381 

exponential equation using a least squares fit indicates a decrease in the ratio of ET to ETO starts 382 

to occur at a profile soil moisture average of 0.35.  However, this depends to some extent on vine 383 

phenology. For example, the period from veraison to harvest ET/ETO shows little change with 384 

average profile of soil moisture decreasing from 0.35 to 0.25.  A significantly greater change 385 

with daily average soil moisture is observed with changes in ET/ETO at the post-harvest stage, 386 

while for bud break to bloom or flowering there is little relationship. This lack of a relationship 387 

stems from the fact that ET is largely coming from the cover crop in the spring, from prior to and 388 

several weeks after bud break and is accessing very little of the available water in the profile 389 

underneath the vines.  390 

    391 

Micro-Bowen ratio and radiation measurements in the interrow 392 
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To better understand the microclimate of the vine and interrow system, three micro-Bowen 393 

ratio stations were deployed during three IOPs in 2015. Additionally, for all years and IOPs, 394 

measurements of solar radiation reaching the ground were made across the vine/interrow system. 395 

These measurements will help to improve our understanding of radiation and wind divergence 396 

through the canopy layer, and to determine whether the model formulations for below-canopy 397 

flux exchange properly account for the unique effects of the vineyard architecture and 398 

microclimate (Kool et al., 2016).  399 

An example of the diurnal fluxes from the three micro-Bowen ratio (micro-BR) systems is 400 

illustrated in Figure 9, along with a photo and schematic illustrating the measurement design 401 

during IOP 2 (June 2015). There is significant spatial and temporal variation in the below-402 

canopy fluxes due primarily to variability in radiation. The micro-BR unit located in the north-403 

facing row underneath the vines receives little radiation over the course of the day and hence 404 

produces low fluxes. On the other hand, the micro-BR system under the south facing vine row 405 

receives high radiation loading during midday and afternoon periods and yields significant soil 406 

heat and latent heat fluxes due to relatively wet soil conditions from the drip irrigation system. 407 

Interestingly the micro-BR unit in the center of the interrow yields large deviations in radiation 408 

and sensible heat flux values but with little temporal variation and magnitude in soil heat flux. In 409 

large part, this is due to a residue layer of senescent cover crop insulating the dry soil in the 410 

interrow. 411 

The variation in solar radiation reaching the ground in the interrow and underneath the vines 412 

has great spatial and temporal variability as seen in the example from July 11, 2015 in Figure 10, 413 

showing radiation measurements from 5 to 8 sensors deployed across the interrow in the north 414 

vineyard (site 1) and south vineyard (site 2). These are 15-8minute average radiation values 415 

during peak vine cover, and demonstrate that the greater biomass and leaf area of site 1 results in 416 

significantly less radiation reaching the ground surface. The heterogeneity in the vine canopy 417 
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cover across the interrow results in the lack of a “smooth” sinusoidal radiation curve measured 418 

below the vine canopy  419 

 420 

Sapflow measurements 421 

To evaluate model partitioning of ET into soil evaporation (E) and cover crop and vine 422 

transpiration (T), vine sapflow measurements were deployed at several locations in the vineyard 423 

to estimate vine T (see Fig. 2). The upscaling of sapflow measurement to canopy level is 424 

challenging, and will use LAI data collected in situ along with remote sensing-based estimates of 425 

daily LAI described below (Sun et al., 2017). Transpiration estimates from sapflow data will be 426 

compared to estimates from a new micrometeorological technique using turbulence data from 427 

eddy covariance flux towers which provide E and T at field scale. This method is based on flux-428 

variance similarity theory, and uses parameterized leaf-level water use efficiency and analysis of 429 

the correlation structure of high frequency carbon and water vapor concentration time-series 430 

observations from each flux averaging interval (Scanlon and Kustas 2010, 2012). A preliminary 431 

analysis of the flux partitioning estimates using EC data for the month of June, 2015 yielded a 432 

ratio of T to ET of 0.80 from sapflow measurements versus 0.83 from the flux-variance 433 

approach. Other months and years during the growing season are currently being analyzed.  434 

 435 

 436 

Surface Renewal 437 

The surface renewal (SR) technique was proposed by Paw U et al. (1995) as a less expensive 438 

alternative to EC for estimating sensible heat flux. SR uses a fast response thermocouple near the 439 

land surface to analyze the energy budget of air parcels that reside ephemerally within the crop 440 

canopy during the turbulent exchange process. The air parcels are manifested as ramp-like 441 

shapes in turbulent temperature time series data, and the amplitude and period of the ramps are 442 
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used to calculate the sensible heat flux density. With an estimate of H, LE (and therefore ET) is 443 

computed as the residual of the energy balance equation (top equation in Fig. 3). 444 

In early studies, the SR method required calibration when applied to different land cover 445 

conditions (French et al., 2012) using 3D sonic measurements of H. However, it was recently 446 

shown that the calibration factor converges near the theoretically predicted value after 447 

compensating for the frequency response characteristics of the SR thermocouple (Shapland et al. 448 

2014). This led to the development of an inexpensive, stand-alone SR method to measure 449 

sensible heat flux without the need for EC calibration.  450 

Estimates of H from the SR station in the south vineyard were computed according to 451 

Shapland et al. (2014). The SR estimates of sensible heat flux collected over the 2015 growing 452 

season (from April through September) in the south vineyard showed good agreement with EC 453 

sensible heat flux (Fig. 11), yielding a least squares regression slope near 1 and a coefficient of 454 

determination (R2) of 0.9.  For daytime conditions with H> 50 W m-2, the mean absolute percent 455 

error (MAPE), calculated as mean absolute error (MAE) divided by mean of the observations 456 

multiplied by 100, was 20%   These results are consistent with recent findings showing strong 457 

correlation between stand-alone SR, EC and weighing lysimetry in another experimental 458 

vineyard (Parry et al. 2017).  459 

 460 

 461 

Evaluation of canopy formulations  462 

Radiation divergence within the canopy 463 

The downwelling shortwave radiation measurements below the vine canopy and across the 464 

interrow are being used to evaluate radiation divergence models of varying levels of complexity 465 

and methods for computing transmitted solar radiation through the canopy to the ground level. 466 

Modeled-measured differences are indicated by the scatter plots for selected models and error 467 
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histograms for all models in Figure 12. Models 1 through 3 use Campbell and Norman (1998) 468 

radiation transfer model, while model 4 uses the 4-stream Scattering by Arbitrary Inclined 469 

Leaves (4SAIL) model (Verhoef et al. 2007) and model 5 uses the Discrete Anisotropic 470 

Radiative Transfer (DART) model (Gastellu et al., 1996).  Four of the five models being tested 471 

(models 2, 3, 4, and 5) account for the unique canopy distribution of the vineyard row structured 472 

canopies. Models 2, 3, and 4 use a geometric view factor approach (treating the canopy as either 473 

an elliptical or rectangular hedgerow), and model 5 characterizes the canopy as a three-474 

dimensional structure. Model 1, which does not account for the canopy row crop distribution, 475 

and uses an empirical clumping index meant for randomly placed canopies such as forests.  476 

While all five models had good agreement with the measured values (R2 ranging from 0.95 to 477 

0.97), the models that treat row structure with greater geometric fidelity (2-5) showed significant 478 

improvement in comparison with the baseline (model 1) based on the error histograms. Of these, 479 

model 3 based on Colaizzi et al (2012) and 5 (the most complex DART model) performed best 480 

yielding the least bias and lowest overall error.  481 

 482 

Canopy wind profile model 483 

A new canopy wind profile model proposed by Massman et al. (2017) accommodates non-484 

uniform canopy structure and wind attenuation with depth throughout the canopy. Multi-level 485 

within-canopy wind measurements collected during GRAPEX IOPs are being used to investigate 486 

whether this new model provides a more physically realistic method for calculating wind speed 487 

attenuation for canopies of arbitrary foliage distribution and leaf area. In comparison with 488 

previously used canopy wind profiles in TSEB such as Goudriaan (1977) or Massman (1987; 489 

1997), the new method uses an additional input describing the relative canopy foliage vertical 490 

distribution. In the case of our study site, the foliage distribution function is considered as a 491 
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combination of Gaussian curves representing the foliage for the vine canopy and the cover crop 492 

layer underneath.  493 

Preliminary results illustrated in Figure 13 (top row) compares modeled below-canopy wind 494 

speed at 1.5 m agl from the new Massman et al. (2017) model and the Goudriaan (1977) 495 

uniform-canopy wind model, originally used in TSEB, with measured horizontal wind speed 496 

from the 3D sonic anemometer deployed during the 2015 IOPs in the north and south vineyards.  497 

The new Massman formulation better reproduces below canopy wind speed measurements in 498 

comparison with the Goudriaan approach, improving R2 from 0.42 and 0.69 at sites 1 and 2, 499 

respectively, to 0.54 and 0.76.  When embedded within the TSEB, the Massman et al (2016) 500 

model improved agreement with measured H fluxes (Fig. 13, bottom row) in comparison with 501 

the Goudriaan model, increasing R2 from 0.6 to 0.7 and reducing daytime MAPE from ~30% to 502 

~20% at both sites.  503 

 504 

Evaluation of remote sensing products  505 

UAV data products 506 

For the AggieAir flights, an intermediate product from photogrammetric procedures applied 507 

to aerial imagery is the estimation of digital surface models (DSM) describing surface 508 

topography. Due to the nature of the information (sunlight surface reflection or reflectance), 509 

these DSM models provide a topographic description of the illuminated objects in the aerial 510 

imagery, and with ground control points provided the DSM accuracy can be close to that of 511 

LIDAR products (vertical accuracy < 0.05m).  512 

Canopy volume estimations (Fig. 14) were made for individual vines in the vineyard using 513 

the DSM, derived from optical camera images at 0.1 to 0.15 m pixel resolution. To discriminate 514 

only canopy volume, a description of the vine spacing and trellis system, bare vine trunk height 515 

and survey-grade GPS coordinates of multiple bare soil locations were necessary. In operations, 516 
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these canopy volume maps which correlate well with the yield map (Fig. 14) may facilitate 517 

identification of dead/unproductive vines and within-season prediction of grape yield and its 518 

variability.  519 

The DSM maps also allow detailed analysis of influence of canopy structure and topography 520 

on signals recorded by imaging sensors.  For example, vegetation oriented away from or towards 521 

the sun will appear darker or brighter, respectively, when compared to a horizontal flat surface. 522 

This micro-scale sun angle-canopy orientation affects the reflectance and temperature of images, 523 

and introduces uncertainty in the analytic results obtained from the imagery (from simple 524 

vegetation indices to much more complicated ET or soil moisture estimates). Few studies are 525 

found in the literature that use airborne very-high resolution imagery to assess these issues, 526 

although correction methods have been developed to reduce the topographic influence on 527 

satellite data (e.g., Li et al., 2012 for Landsat-8; Szantoi and Simonetti, 2013 for Landsat 5, 7, 528 

and SPOT-5). 529 

Related effects of canopy shadowing introduce another level of complexity to image 530 

processing known as shadow identification, de-shadowing, or shadow correction (Fig. 14). 531 

Researchers have investigated shadow detection and removal from satellite imagery (e.g.,Richter 532 

and Muller, 2005; Arevalo et al., 2008). However, there are no analogous procedures developed 533 

for detection and removal of shadow affected pixels for high-resolution airborne imagery. The 534 

impact of shadowing on ET estimation at high resolution is also being evaluated as part of 535 

GRAPEX (Fig. 15).  536 

 537 

TSEB applications to UAV data 538 

The UAV imagery was used to test performance of the TSEB at very high resolution, similar 539 

to the study by Hoffman et al. (2016).  The original TSEB version, which assumes the canopy 540 

transpires at the Priestley-Taylor rate (Norman et al. 1995) as an initial first approximation 541 
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(TSEB-PT), was applied to UAV-acquired thermal radiance data aggregated from the original 542 

0.6 m resolution to 3.6 m – approximately the scale of a single vine-interrow system (3.35 m 543 

wide). The sub-meter native resolution of the UAV imagery also allows the retrieval of the 544 

component canopy and soil/interrow temperatures that can be used directly in a two-temperature 545 

version of TSEB (TSEB-2T; Kustas and Norman, 1997; Colaizzi et al., 2012) which does not 546 

require an initial assumption of the canopy transpiration. Comparisons of EC flux observations 547 

with flux estimates from each modeling approach, generated using UAV data from 2014 and 548 

2015, are shown in Figure 16. 549 

The TSEB-2T provides improved estimates of H and LE, with a MAE of 30 and 50 W m-2, 550 

respectively - nearly half of the MAE from TSEB-PT. For LE, the MAPE values were 25% and 551 

15% for TSEB-PT and TSEB-2T, respectively. ET images generated by TSEB-PT and TSEB-2T 552 

for a UAV flight in early August of 2014 are illustrated in Figure 17. indicating that both model 553 

versions produce similar ET patterns. The tendency is for TSEB-2T to have lower LE values in 554 

certain areas within the vineyards, indicating lower vine water use and perhaps some degree of 555 

stress. Red areas, with LE close to zero, are found on roads, a paved residential area, and an area 556 

between the north and south vineyards comprised of senescent grass. The small rectangular 557 

blocks of low ET in the north and south vineyards are protected vernal pools containing grasses 558 

and ephemeral wetlands, where vines are not allowed to be planted. 559 

Satellite-based leaf area index retrieval 560 

Leaf area index is a key input to TSEB (as well as many other land surface models) and a 561 

quantity associated with many biophysical applications (Myneni et al., 2002). Seasonal maps of 562 

LAI may also be useful for estimating grape yield in vineyards (Sun et al., 2017). A machine 563 

learning approach (Gao et al., 2012) was applied to generate daily LAI maps at 30-m resolution 564 

over the GRAPEX field sites using Landsat surface reflectance and the MODIS LAI products. In 565 

this approach, the Cubist regression tree software was applied to train LAI and surface 566 
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reflectance at the MODIS 1-km resolution. The resulting regression trees were then applied to 567 

the 30-m resolution Landsat data to generate LAI maps at Landsat scale (see example in Fig. 17). 568 

Comparison of retrieved Landsat LAI with ground LAI measurements in the north and south 569 

vineyards from 2013 to 2016 yielded a MAE of 0.44 and a MAPE of ~25% (Sun et al., 2017). 570 

An example of the time series in daily LAI estimated from Sun et al (2017) versus the LAI 571 

ground sampling in 2014 near the flux towers indicates good agreement (Fig. 18). Also shown is 572 

a LAI map for the north and south vineyards at 30 m resolution near the time of peak LAI.  573 

  574 

Satellite-based ET retrievals 575 

The performance of a protoype ALEXI/DisALEXI/data fusion ET modeling system was 576 

evaluated for the 2013 growing season by Semmens et al. (2016), yielding MAE of 0.7 and 0.75 577 

mm/day and MAPE ~19% and 23% in comparison with daily flux observations from the north 578 

and south vineyards, respectively. With additional years of data and model improvements based 579 

on GRAPEX field observations, model performance has improved, particularly in the ability to 580 

recover spring-time evaporative fluxes which are critical to decisions on when to start irrigation. 581 

We can now compare daily ET over multiple full annual cycles, yielding MAE values of 0.6 582 

mm/day and MAPE values of 18% for both sites for the period 2013-2016 (Fig. 19). The model 583 

will continue to be refined, testing the new formulations for in-canopy wind profile and radiation 584 

divergence described above, which are likely to improve agreement with the ET observations. 585 

We will also use sapflow-based estimates of vine transpiration to test the E-T partitioning 586 

capabilities of TSEB at the 30-m Landsat pixel scale. Additionally, with multiple years of daily 587 

ET maps at 30-m resolution, we can begin to investigate changes in water use that are occurring 588 

over the landscape due to varying climate as well as changes in land-use and water management 589 

strategies (Fig. 19).  590 

 591 
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FUTURE OF GRAPEX 592 

Domain expansion – capturing the climatic gradient in the Central Valley 593 

In 2017, the GRAPEX project has extended observations both north (Barrelli vineyard 38.75 594 

N 122.98 W) near Cloverdale CA and south (Ripperdan vineyard 36.84 N 120.21 W) near 595 

Madera CA of the current vineyards (Borden Ranch vineyard 38.29 N 121.12 W) near Lodi CA 596 

(Figure 19). This network samples a significant north-south climate gradient, with degree day 597 

accumulations (DD) for the growing season of 2500 DD for Barrelli, 3700 DD for Borden to 598 

4200 DD for Ripperdan. In addition, three different varieties and trellis designs are used at these 599 

sites, providing a wide range in canopy structure and vine physiology for evaluating the land 600 

surface scheme of TSEB and the data fusion ET toolkit. For 2017, IOPs were conducted from 601 

mid-July to early August (veraison period) when there was high evaporative demand.  602 

Operational applications of technologies 603 

As the integrated ET toolkit matures, the GRAPEX team will be working with the E&J Gallo 604 

Viticulture, Chemistry & Enology and GIS teams, along with growers, to evaluate its utility and 605 

application, including modes of effective information transfer and how specific irrigation and 606 

water management decisions are to be triggered by this information.  In addition, this ET toolkit 607 

will be readily available to other commodity groups, particularly high-value perennial crops such 608 

as orchards, a major water user in California.  609 

E&J Gallo has estimated that if a more robust ET monitoring system resulted in a 10% 610 

reduction in water use for the vineyards in California, there would be considerable economic 611 

savings of up to $200 million based on the value of irrigated water, which in 2014 and 2015 612 

reached $1,000 or more per acre foot in some parts of California. Pumping costs in 2017 are 613 

projected to be around $150 per acre, so a 10% savings would yield about $14 million across the 614 

entire vineyard acreage of the state.  615 
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  The GRAPEX project will also help define how UAV data can be integrated into the 616 

comprehensive monitoring system, providing important information about the condition of the 617 

vines and interrow soil/cover crop, which cannot be discriminated at satellite pixel resolutions. 618 

Does having periodic UAV imagery complement the satellite data stream? What are critical 619 

times in vine phenology stages (berry formation, veraison, post-veraison berry ripening) when 620 

this higher resolution information may be most useful for vineyard management? 621 
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FIGURE CAPTION LIST 852 

 853 

Figure 1. (a) A county level map of California gives the location of the Pinot noir vineyards in 854 

Sacramento County along with a Landsat 8 Normalized Difference Vegetation Index (NDVI)  855 

map showing the location of the vineyards (with yellow boundaries) and with solid yellow 856 

circles indicating the approximate location of the flux towers.  (b) The photos of the vine and 857 

cover crop are indicative of their phenology during the Intensive Observation Periods (IOPs) 858 

involving an extensive set of ground and airborne measurements (see text). (c) The vine trellis 859 

and interrow cropping design and dimensions are illustrated and listed, respectively.  860 

 861 

Figure 2. (a) A photo of the tower installation and sensor locations on the tower is provided, 862 

along with (b) a schematic of the soil heat flux sensor measurement design (see text for details). 863 

 (c) GRAPEX sensor locations in north (site 1) and south (site 2) vineyards, along with leaf area 864 

sampling locations during the IOPs.   865 

 866 

Figure 3. Schematic diagram of the Two-Source Energy Balance (TSEB) model resistance 867 

network for sensible heat flux and the basic set of equations used to obtain an iterative solution. 868 

Symbols represent the following: net radiation (RN), soil heat flux (G), sensible heat flux (H), 869 

latent heat flux (LE), temperature (T), subscripts C and S refer crop and soil/substrate, 870 

respectively, radiometric surface temperature (TRAD ), radiometer viewing angle (), fraction 871 

vegetation cover (fC), soil/substrate aerodynamic resistance (RS ), canopy aerodynamic resistance 872 

(RCy), surface layer aerodynamic resistance (RA), canopy-air temperature (TAC), and surface layer 873 

air temperature (TA).  To achieve an iterative solution TSEB initially computes canopy 874 

transpiration or canopy latent heat flux (LEC) using Priestley-Taylor (PT), Penman-Monteith 875 

(PM) or Light Use efficiency (LUE) formulation. 876 

 877 
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Figure 4. A schematic overview of the inputs and processing steps of the ET data fusion package 878 

for the current processing method and the new processing method under development.  879 

Figure 5. Average of the ground-based LAI measurements near the flux towers collected from 880 

the GRAPEX IOPs over the 2013-2016 growing seasons in the north (site 1) and south (site 2) 881 

vineyards. Also shown is the additional LAI contributed by the cover crop when active and 882 

growing early in the spring and early summer.  883 

 884 

Figure 6. Daytime monthly average (mean of 2013-2016) surface energy balance components- 885 

net radiation (RN), soil heat flux (G), sensible heat flux (H) and latent heat flux (LE) for north 886 

(site 1; solid line) and south (site 2; dashed line) vineyard. 887 

 888 

Figure 7. Soil moisture from the -30, -60 and -90 cm profile sensors located underneath a vine 889 

for the north (site 1) vineyard in 2016 along with observations of precipitation (mm) and 890 

irrigation (mm/vine).  891 

 892 

Figure 8. A comparison of profile average daily soil moisture versus ratio of actual to potential 893 

ET (ET/ETO) for 2013-2016.  The symbols represent data from different vine phenological 894 

stages.  The curve is an exponential least squares fit through all the data. 895 

 896 

Figure 9. The surface energy balance components (top) for a day during IOP2 in June, 2015 as 897 

measured by micro-BR systems located under the vines in bare soil area for the north facing vine 898 

row (the vine  row south of  the center of the interrow ),  for the interrow  and for a south facing 899 

vine row(the vine  row north of the center of the interrow).  Additionally, a schematic with photo 900 

(bottom) illustrating the micro-BR deployment and measurement design.  901 
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  902 

Figure 10. Diurnal radiation measurements above and below the vine canopy using 5 to 8 903 

radiation sensors at north (site 1) and south (site 2) vineyard, respectively, for a clear day  during 904 

IOP 3 (July 11) in 2015. 905 

 906 

Figure 11. Hourly sensible heat flux (H) from eddy covariance measured at the south (site 2) 907 

vineyard flux tower, and hourly H from the stand-alone surface renewal for the 2015 growing 908 

season. Dashed line indicates perfect agreement (1:1 line).  909 

 910 

Figure 12. Comparison of solar radiation divergence model estimates with different levels of 911 

complexity (models 1-5) versus the below vine canopy solar radiation measurements (15 min 912 

averages). Error histograms for all the models indicate the least bias and smallest error with the 913 

observations are from using models 3 and 5.  Scatter plots for models 3 and 5 are provided with 914 

dashed grey line indicating perfect agreement with observations (1:1 line). 915 

 916 

Figure 13. Comparison of (top) measured 1.5 m wind speeds versus TSEB values (15 min 917 

averages) derived using the Goudriaan and Massman within-canopy wind extinction 918 

formulations for the north and south vineyards (sites 1 and 2), and (bottom) resulting impact on 919 

daytime–integrated sensible heat flux estimates over the 2015 growing season.  Dashed line 920 

represents perfect agreement with the observations (1:1 line). 921 

 922 

Figure 14. Example of canopy volume estimated for individual vines for an AggieAir UAV 923 

flight in August 2014 and the 2014 yield map the north vineyard. Note the variability in canopy 924 

volume across the field and an area of highly stressed or dead vines in the upper left with little or 925 

no biomass.  926 



37 

 

 927 

Figure 15. (Top) Variation in modeled ET due to shadow/micro-topography effects, generated 928 

using a DSM for a vine row viewed at different angles. Black/grey dots are the point cloud data. 929 

(Bottom) Automated identification of shadow locations (light green color) along several rows 930 

overlay red-blue-green (RGB) and near-infrared (NIR) false color UAV imagery. 931 

 932 

Figure 16. Comparison of TSEB flux estimates with energy balance components (net radiation 933 

(RN), soil heat (G), sensible heat  (H) and latent heat (LE)) measured at the time of UAV 934 

overpass during flights in 2014 and 2015. Model results are shown (left) using composite 935 

temperatures and TSEB-PT, and (right) using component temperatures and TSEB-2T. In both 936 

cases, the TSEB models were modified to account for radiation and wind transmission through 937 

row crops. 938 

 939 

Figure 17. Latent heat fluxes (LE) maps at 3.5 m resolution computed using TSEB-PT and 940 

TSEB-2T from the UAV imagery collected at the time of Landsat overpass on August 9, 2014. 941 

 942 

Figure 18. On the left is a map of LAI at 30 m resolution for north and south vineyards within 943 

the yellow boundaries at around peak LAI for year 2014 growing season while on the right a 944 

comparison of ground measured versus satellite derived daily LAI near the flux towers in north 945 

and south vineyards over the 2014 growing season (see Sun et al., 2017 for details). 946 

 947 

Figure 19. Cumulative ET (mm) map at 30 m resolution over the growing season (March 1-948 

September 1) for a 9 x 9 km area surrounding the north and south GRAPEX vineyards (top) and 949 

daily ET modeled over the estimated tower footprint (black line) as well as the maximum and 950 
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minimum (range) in ET versus observed (red dots) for the north (site 1) and south (site 2) 951 

vineyards (bottom). 952 

 953 

Figure 20. The expansion of 2017 GRAPEX experimental vineyard sites from Borden site to 954 

Barrelli vineyard to the north and Ripperdan vineyard to the south spanning a large range in 955 

degree day accumulations (see text) and vine varieties and trellis designs. 956 
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Figure 1.   (a) A county level map of California gives the location of the Pinot noir vineyards in 30 

Sacramento County  along with a  Landsat 8 Normalized Difference Vegetation Index (NDVI)  31 

map showing the location of the vineyards (with yellow boundaries) and with solid yellow 32 

circles indicating the approximate location of the flux towers.  (b) The photos of the vine and 33 

cover crop are indicative of their phenology during the Intensive Observation Periods (IOPs) 34 

involving an extensive set of ground and airborne measurements (see text).  (c) The vine trellis 35 

and interrow cropping design and dimensions are illustrated and listed, respectively. . 36 
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 68 

Figure 2 . (a) A photo of the tower installation and sensor locations on the tower is provided, 69 

along with (b) a schematic of the soil heat flux sensor measurement design (see text for details). 70 

 (c) GRAPEX sensor locations in north (site 1) and south (site 2) vineyards, along with leaf area 71 

sampling locations during the IOPs.   72 
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 97 

 98 

Figure 3. Schematic diagram of the Two-Source Energy Balance (TSEB) model resistance 99 

network for sensible heat flux and the basic set of equations used to obtain an iterative solution. 100 

Symbols represent the following: net radiation (RN), soil heat flux (G), sensible heat flux (H), 101 

latent heat flux (LE), temperature (T), subscripts C and S refer crop and soil/substrate, 102 

respectively, radiometric surface temperature (TRAD ), radiometer viewing angle (), fraction 103 

vegetation cover (fC), soil/substrate aerodynamic resistance (RS ), canopy aerodynamic resistance 104 

(RCy), surface layer aerodynamic resistance (RA), canopy-air temperature (TAC), and surface layer 105 

air temperature (TA).  To achieve an iterative solution TSEB initially computes canopy 106 

transpiration or canopy latent heat flux (LEC) using Priestley-Taylor  (PT), Penman-Monteith 107 

(PM) or Light Use efficiency (LUE)  formulation . 108 
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 136 

Figure 4. A schematic overview of the inputs and processing steps of the ET data fusion package 137 

for the current processing method and the new processing method under development.  138 
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 167 

Figure 5. Average of the ground-based LAI measurements near the flux towers collected from 168 

the GRAPEX IOPs over the 2013-2016 growing seasons in the north (site 1) and south (site 2) 169 

vineyards.  Also shown is the additional LAI contributed by the cover crop when active and 170 

growing early in the spring and early summer.  171 
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 222 

Figure 6. Daytime monthly average (mean of 2013-2016) surface energy balance components- 223 

net radiation (RN), soil heat flux (G), sensible heat flux (H) and latent heat flux (LE) for north 224 

(site 1; solid line) and south (site 2; dashed line) vineyard. 225 
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 265 

Figure 7. Soil moisture from the -30, -60 and -90 cm profile sensors located underneath a vine 266 

for the north (site 1) vineyard  in 2016 along with observations of precipitation (mm) and 267 

irrigation (mm/vine).    268 
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 325 

 326 

Figure 8. A comparison of profile average daily soil moisture versus ratio of actual to potential 327 

ET (ET/ETO) for 2013-2016.  The symbols represent data from different vine phenological 328 

stages.  The curve is an exponential least squares fit through all the data. 329 
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Figure 9. The surface energy balance components (top) for a day during IOP2 in June, 2015 as 370 

measured by micro-BR systems located under the vines in bare soil area for the north facing vine 371 

row (the vine  row south of  the center of the interrow ),  for the interrow  and for a south facing 372 

vine row(the vine  row north of the center of the interrow).  Additionally a schematic with photo 373 

(bottom) illustrating the micro-BR deployment and measurement design.  374 

  375 

 376 

 377 

 378 

 379 

 380 



 381 

 382 

 383 

 384 

 385 

 386 

 387 

 388 

 389 

 390 

 391 

 392 

 393 

 394 

 395 

 396 

 397 

 398 

 399 

 400 

 401 

 402 

 403 

 404 

 405 

 406 

 407 

 408 

 409 

 410 

 411 

 412 

 413 

 414 

 415 

 416 

 417 

Figure 10. Diurnal radiation measurements above and below the vine canopy using 5 to 8 418 

radiation sensors at north (site 1) and south (site 2) vineyard, respectively,  for a clear day  during 419 

IOP 3 (July 11) in 2015. 420 
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Figure 11. Hourly sensible heat flux (H) from eddy covariance measured at the south (site 2) 468 

vineyard flux tower, and hourly H from the stand-alone surface renewal for the 2015 growing 469 

season.  Dashed line indicates perfect agreement (1:1 line).  470 
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Figure 12. Comparison of solar radiation divergence model estimates with different levels of 514 

complexity (models 1-5) versus the below vine canopy solar radiation measurements (15 min 515 

averages). Error histograms for all the models indicate the least bias and smallest error with the 516 

observations are from using models 3 and 5.  Scatter plots for models 3 and 5 are provided with 517 

dashed grey  line indicating perfect agreement with observations (1:1 line)..  518 

 519 

 520 

 521 

 522 

 523 

 524 

 525 

 526 

 527 



 528 

 529 

 530 

 531 

 532 

 533 

 534 

 535 

 536 

 537 

 538 

 539 

 540 

 541 

 542 

 543 

 544 

 545 

 546 

 547 

 548 

 549 

 550 

 551 

 552 

 553 

 554 

 555 

 556 

 557 

 558 

 559 

 560 

 561 

 562 

 563 

 564 

 565 

Figure 13. Comparison of (top) measured 1.5 m wind speeds versus TSEB values (15 min 566 

averages) derived using the Goudriaan and Massman within-canopy wind extinction 567 

formulations  for the north and south vineyards (sites 1 and 2), and (bottom) resulting impact on 568 

daytime–integrated sensible heat flux estimates over the 2015 growing  season.  Dashed line 569 

represents perfect agreement with the observation s (1:1 line). 570 
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Figure 14. Example of canopy volume estimated for individual vines for an AggieAir UAV 619 

flight in August 2014 and the 2014 yield map  the north vineyard. Note the variability in canopy 620 

volume across the field and an area of highly stressed or dead vines in the upper left with little or 621 

no biomass.  622 
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Figure 15. (Top) Variation in modeled ET due to shadow/micro-topography effects, generated 664 

using a DSM for a vine row viewed at different angles. Black/grey dots are the point cloud data. 665 

(Bottom) Automated identification of shadow locations (light green color) along several rows 666 

overlay red-blue-green (RGB) and near-infrared (NIR) false color  UAV imagery. 667 

 668 

 669 

 670 

 671 

 672 

 673 

 674 



 675 

 676 

 677 

 678 

 679 

 680 

 681 

 682 

 683 

 684 

 685 

 686 

 687 

 688 

 689 

 690 

 691 

 692 

 693 

 694 

 695 

 696 

 697 

 698 

 699 

 700 

 701 

 702 

 703 

 704 

 705 

 706 

 707 

 708 

Figure 16. Comparison of TSEB flux estimates with energy balance components (net radiation 709 

(RN), soil heat (G),  sensible heat  (H) and latent heat (LE)) measured at the time of UAV 710 

overpass during flights in 2014 and 2015. Model results are shown (left) using composite 711 

temperatures and TSEB-PT, and (right) using component temperatures and TSEB-2T. In both 712 

cases, the TSEB models were modified to account for radiation and wind transmission through 713 

row crops.   714 
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Figure 17. Latent heat fluxes (LE) maps at 3.5 m resolution computed using TSEB-PT and 760 

TSEB-2T from the UAV imagery collected at the time of Landsat overpass on August 9, 2014. 761 
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Figure 18. On the left is a map of LAI at 30 m resolution for north and south vineyards within 803 

the yellow boundaries at around peak LAI  for year 2014 growing season while on the right a 804 

comparison  of ground measured versus satellite derived daily LAI  near the flux towers in north 805 

and south vineyards over the 2014  growing season (see Sun et al., 2017 for details).   806 
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Figure 19. Cumulative ET (mm) map at 30 m resolution over the growing season (March 1-852 

September 1) for a 9 x 9 km area surrounding the north and south GRAPEX vineyards (top) and 853 

daily ET modeled over the estimated tower footprint (black line) as well as the maximum and 854 

minimum (range) in ET versus observed (red dots) for the north (site 1) and south (site 2)  855 

vineyards (bottom).      856 

 857 

 858 

 859 

 860 

 861 

 862 

 863 

 864 

 865 

 866 

 867 

 868 

 869 

 870 



 871 

 872 

 873 

 874 

 875 

 876 

 877 

 878 

 879 

 880 

 881 

 882 

 883 

 884 

 885 

 886 

 887 

 888 

 889 

 890 

 891 

 892 

 893 

 894 

 895 

 896 

 897 

 898 

 899 

 900 

 901 

 902 

 903 

 904 

 905 

 906 

Figure 20. The expansion of 2017 GRAPEX experimental vineyard sites from Borden site to 907 

Barrelli vineyard to the north and Ripperdan vineyard to the south spanning a large range in 908 

degree day accumulations (see text) and vine varieties and trellis designs. 909 

 910 

 911 

 912 

 913 

 914 


