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Summary

e Starch is the primary energy storage molecule used by most terrestrial plants to fuel respira-
tion and growth during periods of limited to no photosynthesis, and its depletion can drive
plant mortality. Destructive techniques at coarse spatial scales exist to quantify starch, but
these techniques face methodological challenges that can lead to uncertainty about the labil-
ity of tissue-specific starch pools and their role in plant survival.

e Here, we demonstrate how X-ray microcomputed tomography (microCT) and a machine
learning algorithm can be coupled to quantify plant starch content in vivo, repeatedly and
nondestructively over time in grapevine stems (Vitis spp.).

e Starch content estimated for xylem axial and ray parenchyma cells from microCT images
was correlated strongly with enzymatically measured bulk-tissue starch concentration on the
same stems. After validating our machine learning algorithm, we then characterized the spa-
tial distribution of starch concentration in living stems at micrometer resolution, and identified
starch depletion in live plants under experimental conditions designed to halt photosynthesis
and starch production, initiating the drawdown of stored starch pools.

e Using X-ray microCT technology for in vivo starch monitoring should enable novel research
directed at resolving the spatial and temporal patterns of starch accumulation and depletion in

woody plant species.

Introduction

Immobilization, aggregation and storage of photosynthate as
starch provide a buffer mechanism that permits plants to main-
tain cellular processes, growth and defense functions in periods
when metabolic demand exceeds energetic supply. Plants adjust
starch synthesis and degradation rates in response to various envi-
ronmental and phenological cues with the associated kinetics
varying along hourly to seasonal timescales (Smith & Stitt, 2007;
Gibon ez al., 2009; Sulpice ez al., 2009). Consequently, starch is a
central molecule involved in the metabolic regulation of a plant’s
growth trajectory. Further, during periods of low to no photosyn-
thesis, depletion of stored starch is thought to underlie stress-
induced mortality associated with drought and pathogenic infec-
tion (McDowell, 2011; Sevanto etal, 2014; Dickman etal.,
2015). Despite the importance of starch for plant function, only
destructive methods with limited spatial resolution exist for
quantifying and monitoring starch storage and depletion. These
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technical limitations eliminate the opportunity for repeated mea-
surements, introduce substantial across-sample variability, and
limit conclusions to bulk tissue. Furthermore, a recent multi-
laboratory experiment testing identical starch samples (Germino,
2015; Quentin ez al., 2015) showed that methodological variabil-
ity leads to highly inconsistent results between research groups,
which precludes direct, quantitative comparisons between
datasets. Problems related to quantification of starch also arise
from the spatial and temporal dynamics of the storage and subse-
quent utilization of starch by the plant. To obtain a more com-
prehensive understanding of the role of this transient compound,
it is necessary to develop tools that can capture the spatiotempo-
ral dynamics of processes related to carbohydrate accumulation
and depletion in the intact plant (Bansal & Germino, 2009;
Adams et al., 2013; Rosas ez al., 2013; Richardson ez al., 2015).
Recently, X-ray microcomputed tomography (microCT) has
emerged as a nondestructive technique that can be used to create
digital cross-sections of a physical object, such as plant tissue,
with micrometer- and submicrometer-scale resolution. The
absorption of X-rays as a function of an object’s physical and
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chemical properties makes possible spatial segmentation by mate-
rial type in biological organisms. In plants, X-ray microCT has
primarily been used to segment air, water and cell wall domains,
which have low to high X-ray absorption coefficients, respectively
(Steppe etal.,, 2004; Brodersen eral, 2011; Herremans ezal.,
2013; Théroux-Rancourt ez al., 2017). As a result, previous stud-
ies employed X-ray microCT to quantify the transition between
water- and air-filled vascular conduits in plant stems and leaves
(Brodersen ez al., 2013; Knipfer ez al., 2015a), along with three-
dimensional segmentation of anatomical features in fruits, seeds,
leaves, and roots (Dhondt eral, 2010; Knipfer eral., 2015b;
Cuneo etal., 2016; Théroux-Rancourt et al., 2017). The chemi-
cal and structural similarities between starch and cell wall mate-
rial, especially cellulose, suggest that these molecules may
similarly absorb X-ray energy. Unlike cell wall material, however,
starch is a transient molecule that occupies cellular regions other-
wise filled with a less dense cytosolic liquid. Hence, we hypothe-
size that differences in X-ray absorption within the cell interior
correspond with the volumetric predominance of starch granules
vs cytosolic liquid.

To quantify starch concentrations 7z vivo it is necessary to
identify the sites of starch storage and characterize the cells
where starch accumulates. Cells containing starch exist through-
out most plant organs, including leaves, stems and roots. Ray
and axial parenchyma (RAP), and in some species fibers with
living protoplasts, serve as the primary sites for long-term starch
storage in woody stems (Fahn & Leshem, 1963; Plavcova ezal.,
2016). Across a diverse range of temperate tree species possess-
ing a variety of RAP cell shapes and sizes, the cellular fraction
comprising RAP tissue has been linked to increased concentra-
tion of nonstructural carbohydrates (Plavcovd eral., 2016; Pratt
& Jacobsen, 2016). Thus, RAP cells represent the primary site
for starch storage and thus a promising target for X-ray
microCT analysis of starch content. RAP cells are surrounded
by a secondary cell wall and are easily distinguishable in
microCT images from nonliving and lignified tissue found in
the xylem, such as fibers and vessels (Steppe ez al., 2004; Bulcke
etal., 2009; Brodersen, 2013). At the same time, substantial
variability exists with respect to RAP cell shape and dimension,
even within an individual plant (Morris ezal., 2016). Conse-
quently, detection of starch using microCT imaging in RAP tis-
sue will require more sophisticated computational techniques
beyond simple statistical descriptors, such as the local mean and
variance of X-ray absorption, to differentiate starch from the
surrounding cellular components.

Here, we quantify and monitor starch 7z vivo at microme-
ter-scale resolution in stem RAP tssue in the model plant sys-
tem of grapevine (Vitis spp.) using X-ray microCT and a
supervised machine learning algorithm. Not only is grapevine a
commercially important agricultural woody species, its genome
is fully sequenced and its RAP tissue is similar to many other
woody species. We apply this technique to spatally map
in vivo regions of starch depletion in plants experiencing pro-
longed darkness. Such 7z vivo starch analysis at micrometer res-
olution should enable novel research directions across the plant
sciences.
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Materials and Methods

Plant specimen

Grapevine plants (Vitis riparia, V. champinii, V. berlanderii) were
grown from 5- to 10-cm-long herbaceous cuttings obtained from
established parent plants at the University of California, Davis’s
experimental vineyards (Knipfer ezal, 2015a,b). Cuttings were
transplanted into 0.7-11 plastic pots filled with a soil mix of
40% washed sand, 20% sphagnum peat moss, 20% redwood
compost, and 20% pumice rock. Subsequently, plant growth was
maintained for 4-12 wk under glasshouse conditions (approxi-
mate day: night temperature of 25:8°C, light: dark photope-
riod of 15:9h, relative humidity of 35%, and photosynthetic
active radiation of 500 pmol m™?s~" during the day). In the
glasshouse, plants were drip-irrigated twice daily with water sup-
plemented with calcium (90 pg ml™"), magnesium (24 pg ml™"),
potassium (124 pg ml ™), nitrogen as NH4" (6 pug ml™"), nitro-
gen as NO3;~ (96 pgml™"), phosphorus (26 pgml™"), sulfur
(16 pg ml™"), iron (1.6 ug ml™), manganese (0.27 ng ml™),
copper (0.16 pgmlfl), zinc (0.12 ng ml™"), boron (0.26 ug
ml™'), and molybdenum (0.016 pg ml ") at pH 5.5-6.0. Plants
were maintained under well-watered conditions until analysis (c.
0.3 m tall with ¢. 0.01 m diameter stems). MicroCT imaging and
corresponding enzymatic validation were performed on a total of
n=12 well-watered plants. An additional set of n=6 well-
watered plants were selected for testing the effect of dark treat-
ment on starch composition in RAP tissue. Thirty days before
microCT scanning, three randomly selected plants were placed in
a cardboard box to eliminate light availability, that is, ‘deep
shade’ treatment. The other three plants continued to be grown
at ¢ 200 umolm *s~' photosynthetic photon flux density
(PPED).

X-ray microCT imaging

Plants were scanned at the microCT facility (Beamline 8.3.2) at
the Lawrence Berkley National Laboratory Advanced Light
Source (ALS) (for details, see Brodersen ez al, 2010; McElrone
etal., 2013; Knipfer eral., 2015a,b). On the day of scanning,
plants were transported from the glasshouse to the ALS around
3 h before the start of analysis. For visualization of plant tissue,
the pot of an intact plant was placed in an aluminum cage and
fixed on an air-bearing stage. To reduce vibrations and stem
movement during the scan, a plastic cylinder was mounted on
top of the aluminum cage. After the plant was set up properly, a
1-5 mm section of the stem just above the soil was scanned in
the 19-21keV synchrotron X-ray beam using the continuous
tomography setting that yields 1025 two-dimensional images
with a 3.2-pum-pixel resolution captured on a CMOS camera
(PCO.edge; PCO AG, Kehlheim, Germany). The acquired two-
dimensional projection images were reconstructed into a stack of
transverse images with a custom software plugin for Fij1 imaging-
processing software (www.fiji.sc, IMAGE]) that used Ocrorus 8.3
software (Institute for Nuclear Sciences) in the background. The
scanned stem portion was harvested and stored at —20°C prior
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to enzymatic starch analysis. The three-dimensional images of
plant tissue were generated using Avizo 6.2 software (VSG).

RAP starch content classification using X-ray microCT and
machine learning

The RAP fraction full of starch was classified using a supervised
Random Forest machine learning algorithm. For each stem seg-
ment, the central slice of the full microCT image stack was
selected. Raw microCT images were opened in IMAGE] (Schin-
delin eral., 2012) and each RAP boundary was visually outlined
and defined as a ‘region of interest’ (ROI), resulting in ¢. 30 indi-
vidual RAPs per stem segment. Next, 10 RAP polygons per stem
sample were randomly selected for training the Random Forest
classification algorithm. Training was done by visually identify-
ing regions in which the RAP cell lumen was present (i.e. empty
of starch) or absent (i.e. full of starch). These ROI polygon
files were then saved in ‘zip’ format from the IMaGe] ROI
manager for subsequent import into PYTHON (Python Software
Foundation). After this, 10 RAP ROI polygons were selected to
be labeled as full/empty of starch.

The microCT images of the 12 stem samples were divided into
training and test datasets. This is necessary to test model perfor-
mance on data that were not used for training and to avoid over-
fitting to the training dataset. We split the data into training and
test groups by visually categorizing the plants into empty, partly
full, and mostly full RAP groups which resulted in four plants
per category. Then, we assigned two plants from each category to
either a training or testing dataset. The raw microCT images
selected for each dataset can be downloaded from the associated
Github repository (https://github.com/masonearles/PlantStarc
hCT).

Several preprocessing steps were needed to successfully train a
classifier that could generalize across the wide range of anatomical
variability observed in our dataset. First, to remove local outliers,
microCT images were denoised using total variation denoising,
that is, the ROF denoise function (Rudin ez /., 1992) in IMAGE].
This was done to remove distinct differences in the variance of
nonstem air pixels. As these pixels should theoretically have the
same variance of X-ray absorption, we assume such differences
are a result of measurement noise. To remove this undesirable
source of variance, we chose the ROF denoising parameter in
IMAGE], that is, sigma, such that the new variance of these non-
stem air pixel regions were £10% across all samples. These
denoised images were then saved and opened, along with all
ROIs, in PyrHON. Using the RAP ROI polygons, areas outside
the RAPs were masked (i.e. set to ‘NaN’). The microCT images
were then labeled as empty vs full of starch by setting the values
equal to ‘0’ and ‘l’, respectively. To remove nonplant back-
ground data and improve computational efficiency, rectangular
polygon ROIs that define the plant stem boundaries were gener-
ated in IMAGE] for each sample, imported into PyTHON, and used
for cropping. Using contrast stretching, we then centered and
scaled each image histogram to be bound within the lower 1.5%
and 98.5" percentiles of the pixel intensity values contained
within each plant’s RAP regions.
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Various types of feature layers were generated by convolving
the preprocessed images with various types of kernels (e.g. Gaus-
sian, variance, lines, and patches) in an attempt to capture the
spatial patterns in X-ray absorption of starch, parenchymal cells,
and cell wall tissue. In the final model we used four basic types of
feature layers. First, we used the preprocessed microCT image.
Second, we used three Gaussian filters with SD values of 1, 3 and
5, and kernel dimensions of 3, 9 and 15 pixels, respectively. This
filter blurs the image based on neighboring pixel values, with the
relative weight decreasing with distance and defined by the SD
parameter. Third, we used the sum, minimum, maximum and
mean of five variance filters with kernel dimensions of 5, 7, 15,
21 and 29 pixels. This filter was selected to capture the higher
degree of variance observed in empty starch regions that resulted
from the presence of bright cell wall boundaries and dark cell
interiors, as opposed to the lower variance resulting from a rela-
tively homogenous appearance of the RAP tissue when starch was
presumed to be present. By combining variance filters of different
sizes, we aimed to account for the wide range of RAP cell dimen-
sions observed. Fourth, we applied the three Gaussian filters
described eatlier to the mean of the variance filters also described
earlier. Membrane projection filters and patch filters were also
tested, but did not improve model classification (see associated
code in Github repository). Overall, we ended up with 11 feature
layers that were used to predict empty vs full RAP pixels.

A Random Forest algorithm from the PyrHON Scikit-Learn
library (Pedregosa ezal., 2011) was used to train a classification
model that predicted empty vs full RAP pixels based on the 11
feature layers. To avoid biasing the model toward plants with a
greater amount of RAP tissue, and thus proportionally more pix-
els, we expanded the dataset such that an equal number of pixels
were randomly drawn for images from each plant. We trained
the Random Forest algorithm on 10 RAP files from the six train-
ing data images using 100 decision trees and found that the other
default model parameters in the Scikit-Learn Random Forest
classification algorithm produced the best results. This model was
then used to make predictions on 10 RAP files from the six test
data images, and ultimately for the remaining unlabeled RAP
regions across all stem segments. Out-of-bag prediction accuracy
was used to determine model performance within the training
dataset. We generated a confusion matrix using the test data and
calculated five performance metrics (see later Fig. 5): accuracy
(ACQ), detection precision of empty/full regions (Pempey/ Pruil)»
and detection sensitivity of empty/full regions (Sempey/ Sun)- ACC
is the probability of positively or negatively classifying a RAP
pixel as either full/empty. Detection precision is the probability
that the algorithm correctly predicts if a RAP pixel is full/empty.
Detection sensitivity is the probability of detecting the presence
of a full/empty RAP pixel.

Using this technique permitted the comparison of RAP frac-
tion classified as full of starch with enzymatically measured
starch. Further, we were able to spatially map starch distribution
within stem segments at the micrometer scale. Linear models
were used to test for the strength of the relationship between
RAP fraction classified as full of starch and enzymatically
measured starch values.
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Enzymatic nonstructural carbohydrate measurement

We measured soluble carbohydrates in woody stem tissue following
removal of the bark and presumably phloem using a fresh razor
blade (Leyva ezal, 2008). In short, 1 ml of deionized water was
added to 50 mg of dried tissue, vortexed, heated to 72°C for
15 min, and spun at 21 000 g for 10 min. A 50 pl aliquot of the
supernatant was diluted (x25) and mixed with 150 pl of sulfuric
acid (98%) and anthrone (0.1%, w/v) solution in a 96-well
microplate. The precipitated pellet was reserved for later starch anal-
ysis. The plate was cooled on ice at ¢. 4°C for 10 min, then heated
to 100°C for 20 min, and finally left to adjust to room temperature
for 20 min (22°C). We determined the sugar concentrations as
glucose equivalents from the colorimetric reading (Thermo Scien-
tific Multiskan, Waltham, MA, USA) of absorbance at 620 nm
(Aga0) using a predetermined standard curve (0, 0.01, 0.03, 0.1 and
0.3 mg ™" glucose), and multiplied the result by a measured aver-
age wood density of 0.63 gcm ™. After extracting the soluble carbo-
hydrates as described eatlier, the remaining pellet was processed
further to determine tissue concentrations of starch. After two
washes with 80% ethanol, the pellet was exposed to 100°C for
10 min and submitted to enzymatic digestion for 4 h in an acetate
buffer (pH=5.5) with 0.7 U of amylase and 7 U of amyloglucosi-
dase at 37°C. Once the digestion was finished, samples were cen-
trifuged for 5 min at 21 000 g and the supernatant was diluted
1 : 20 and quantified using the method described earlier.

1000 um
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Results and discussion

Visualization of RAP tissue using X-ray microCT

Ray and axial parenchyma tissue domains were clearly identifiable
in grapevine stems based on cell size and orientation when exam-
ined using X-ray microCT (Fig. 1). Rays extended from the outer
pith perimeter, through the xylem and phloem, and ended at the
cortex. In the example shown in Fig. 1, both transverse and longi-
tudinal sections through the RAP tissue revealed two distinct
regions (Fig. 1c,d). RAP tissue near the cortex had clearly visible
rectangular parenchyma cells that exhibited a strong contrast
between the cell wall and lumen (termed ‘empty’ and highlighted
with a yellow polygon in Fig. I¢c). RAP cell walls had relatively
high X-ray absorption, whereas X-ray absorption in the cell inte-
rior was more like that seen in water-filled vessel interiors (Fig. 2).
Conversely, RAP tissue more proximal to the pith had a granular
texture in which the cell wall and lumen were not visible (termed
‘full’ and highlighted with a magenta polygon in Fig. 1¢). These
RAP regions generally had higher overall X-ray absorption, simi-
lar to that in cell wall material (Fig. 2). Further, they contained
small bright spots that superficially resemble starch granules in
both size and shape, which is granular in its crystalline form as
previously observed in optical sections stained with potassium
iodide (e.g. Czemmel ez al., 2015). The observation of lower and
higher X-ray-absorbing regions within RAP tissue corroborated

500 um

Fig. 1 Visualization of grapevine stem tissue using X-ray microcomputed tomography. (a) Volume rendering showing a transverse section through the
stem (E, epidermis; P, phloem; V, vessel). Ray and axial parenchyma (RAP) are located in xylem tissue between radial files of vessels (highlighted in yellow/
orange color). (b) Three-dimensional representation of RAP (enclosed by dashed line) embedded in stem xylem tissue (left-hand panel), and corresponding
longitudinal image slice through RAP (enclosed by dashed line) showing parenchyma cells devoid of solid, putative starch granules in dark gray color
(examples indicated by arrows) (right-hand panel). Transverse and longitudinal images sectioning through the RAP are indicated as xy- and xz-slices,
respectively. (c, d) Enlarged transverse (c) and longitudinal (d) images corresponding to (b) visualizing the composition of RAP tissue. Two RAP regions can
be visually distinguished by their shape and texture: full (magenta polygons) or empty (yellow polygons).
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Fig.2 (a) Probability density plots showing the linear X-ray attenuation
coefficients (absorption cm™") of vessel lumen (blue), ray and axial
parenchyma (RAP) empty (red), RAP full (green), and cell wall (gold) in
Vitis sp. with examples of corresponding regions shown in (b). Negative
values result from the log transformation of X-ray transmission required to
calculate absorption.

our initial hypothesis that such differences should exist in corre-
spondence with the distinct molecular structure of water, starch
and cell wall material. However, it should be noted that other
cytosolic compounds solid in nature may interfere with our
detection methods, but to date we are not aware of such
phenomenon.

RAP tissue classification as full or empty via supervised
machine learning

To test if regions of cells that visually appeared full/empty corre-
sponded with the presence/absence of starch required a technique
for quantifying the distinct X-ray absorption patterns visible in
the microCT images. Trainable machine learning algorithms
have emerged in recent years as a powerful computational tech-
nique for detecting complex visual patterns. Initially, the user
defines a set of distinct classes and the computer refines an algo-
rithm that minimizes the classification error based on a set of
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image filters utilized for visual feature detection. Given the sub-
stantial amount of morphological variability in RAPs (Plavcova
etal., 2016), such a technique was especially relevant. Classifying
10 RAP regions in six stems as either full or empty types (Figs 3,
4) resulted in a prediction accuracy of 74 & 3% (1 SE; Fig. 5) for
the test dataset (z=0) and 97 £ 1% (Fig.5) for the training
dataset (7= 06). Moreover, the model had relatively high sensitiv-
ity and precision for full and empty regions (Fig. 5). After train-
ing the classifier, we applied it to the remaining 20-30 unlabeled
RAP regions for each stem sample (Fig. 3¢). Across the 12 stem
samples, this resulted in predictions that full-type features occu-
pied 16-73% of RAP tissue (Fig. 6). From Fig. 6 it is clear that
the fraction of full-type features was independent of stem diame-
ter. Preprocessing, training on ¢. 1.5 million pixels, and predict-
ing a similar number of pixels took ¢. 5 CPU min on a quad-core
machine.

Our initial efforts attempted to use simple statistical descrip-
tors of the RAP regions, such as the mean, variance, and kurtosis
of the X-ray absorption values. However, a high degree of within-
and among-sample variability precluded the use of such tech-
niques. For example, in empty regions RAP cell lumen size
ranged from <6 to > 81 um?. This caused substantial variability
in the proportion of cell wall to lumen present in RAPs, resulting
in a broad set of mean and variance values within and across sam-
ples. Other sources of variability with respect to X-ray absorption
were also present as a result of, for instance, energy fluctuation of
the X-ray beam, diffraction patterning, and X-ray absorption
edge effects.

Predicting enzymatically measured starch content at
micrometer-scale resolution

Enzymatically measured starch concentration for the classified
samples ranged from 3 to 84 mg g71 (Fig. 6). Visual inspection

Fig. 3 lllustration of Random Forest machine learning segmentation of full (magenta) and empty (yellow) ray and axial parenchyma (RAP) regions from
microcomputed tomography images. The technique consisted of: (a) manually defining RAP regions in the cross-section of grapevine stems; (b) manually
classifying pixels as visually appearing full (magenta polygons) or empty (yellow polygons) for 10 RAP regions in six training images for the Random Forest
machine learning algorithm; and (c) automatically classifying pixels as full or empty based on the initial training data for the test images and the remaining

20-30 RAP regions in the training images.
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Fig.4 Machine learning framework for in vivo quantification of starch in
plant stems (Vitis sp. shown). (1) X-ray microcomputed tomography
(microCT) images of the stem cross-section were collected as 32-bit
images. (2) Visually empty/full parenchymal regions were manually
labeled as full or empty of starch. (3) Manually labeled images were split
equally into test and training image datasets. (4) MicroCT images were
preprocessed (i.e. cropped, denoised, and contrast stretched) to normalize
images across plant samples and to facilitate learning by the training
algorithm. (5) Feature layers were generated by convolving the
preprocessed images with various types of kernels (e.g. Gaussian,
variance, lines, and patches) that corresponded with spatial patterns in X-
ray absorption of starch, parenchymal cells, and cell wall tissue. (6) A
Random Forest algorithm was used to train a model to predict the labeled
training images based on available feature layers. (7) The trained model
was used to predict empty/full ray and axial parenchyma (RAP) regions in
test images that were not used for training and the model's performance
was evaluated.

1.00 A
Train

0.75 - + ¢ ™ +
Test

0.50 A

0.25 A

0.00 A

T T
ACC P, P S, S

empty full empty

Fig. 5 Performance metrics for segmentation of the training (n=6; gray
points and lines; lines are occluded by points) and test (n = 6; black points
and lines) images using the Random Forest machine learning algorithm of
Vitis sp., assuming manual segmentation for 10 ray and axial parenchyma
(RAP) files per sample as ‘groundtruth’ values. ACC, accuracy; P,
precision for predicting full RAP regions; Pempty, precision for predicting
empty RAP regions; Sy, sensitivity for predicting full RAP regions; Sempty,
sensitivity for predicting empty RAP regions. Mean value of each
performance metric for all six samples and 1 SE are shown. Note that all
metrics are fractional and, therefore, range from O to 1.

revealed that samples in which full regions comprised a large
fraction of RAP tissue also tended to have high starch concen-
trations as measured enzymatically. On the other hand, samples
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in which RAP tissue comprised predominantly empty regions
had low enzymatically measured starch concentrations. At the
entire stem level we found a strong positive relationship
between the RAP fraction classified as full via machine learning
and the starch content measured destructively using enzymatic
digestion (Fig. 7; linear fit, R =094, P< 0.001). This finding
provides support for our initial hypothesis that differences in
the spatial patterns of X-ray absorption in RAP tissue should
correspond with the volumetric predominance of starch gran-
ules vs cytosolic liquid.

Light is essential for photosynthetic production, and in turn
the absence of light forces a plant to deplete its starch reserves
(Chang, 1980). We tested the ability of X-ray microCT to cap-
ture this predicted decline in starch within plants that were main-
tained for 30 d in darkness (i.e. dark treatment) vs a moderate
light environment at ¢. 200 pmol m 25! PPED (i.e. control).
After 30 d, the cell lumens of dark-treated plants were completely
devoid of starch granules throughout the entire RAP region
(Fig. 8). By contrast, RAP regions of control plants were between
40% and 75% full. By first applying our machine learning algo-
rithm and then using the calibration curve shown in Fig. 7, we
estimated that dark-treated plants had starch concentrations of
0 mgg ™', whereas control plants were estimated to have between
52 and 75 mg gfl. Hence, our iz vivo technique for starch quan-
tification was able to spatially detect and quantify differences in
starch depletion as a result of dark treatment.

These observations highlight how the capacity to spatially
track starch mobilization within the tissue can provide novel
insights beyond classical starch quantification methods. In both
experiments, starch depletion did not show an anisotropic spatial
pattern, as empty and full cells were adjacently located, forming
relatively full or empty domains. These patterns could have
implications for carbohydrate management at the whole-plant
level. The absence and mobilization of starch seemed to begin at
the wood periphery and progressed in a centripetal direction
toward the stem center (Figs 6, 8). Previous research showing low
variation of starch concentrations at the center of tree trunks sug-
gested that these pools act as buffers at multi-annual scales (Hart-
mann & Trumbore, 2016). Such an anatomical pattern would
presumably only allow starch accumulation in outer RAP cells
once inner RAP cells were already filled with starch. On the other
hand, emptying of starch-filled cells seemed to occur from the
outermost RAP cells toward the phloem. Such a pattern could be
the result of a low soluble sugar concentration in the apoplast
(Carpaneto etal, 2005, 2010; Secchi & Zwieniecki, 2016)
owing to a diffusional gradient maintained by a leaky phloem
(Knoblauch & van Bel, 1998). Thus, the proximity of the
phloem and cambium to peripheral starch depletion in wood
might provide an explanation for this mobilization pattern,
ensuring fast and efficient radial transport to the outermost RAP
tissues requiring carbohydrates for respiration (Tyree etal,
1999).

X-ray microCT images indicated that RAP cells tend to be
either full or empty with a relatively sharp border between RAP
domains categorized as empty and full. This feature made the
machine learning a relatively straightforward process, and could
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Fig. 6 Spatial maps of regions predicted as full (magenta) or empty (yellow) in ray and axial parenchyma (RAP) tissue of 12 Vitis spp. stems. The
corresponding enzymatically measured starch concentration for each plant is provided above the RAP map.

have important implications for our biological understanding of
starch reserve formation and utilization, particularly in model
systems such as Vitis vinifera or Arabidopsis thaliana, where the
linkages between gene expression and starch metabolism are bet-
ter understood (Dai etal, 2013; Feike etal, 2016; Zhu etal.,
2017). Local changes in carbohydrate availability could trigger
whole-cell responses in enzymatic activity toward either continu-
ous accumulation or degradation, but less commonly toward an
intermediate status of being partly full. This relatively binary pat-
tern seemed to be spatially constrained, as empty and full cells
seemed to be adjacent to each other, forming contiguous full or
empty domains.

New Phytologist (2018) 218: 1260-1269
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Using X-ray microCT for 77 vivo starch quantification presents
various limitations and opportunities for refinement. X-ray
microCT instruments are not available at many institutions and
require expert knowledge to operate. Further, there is typically a
tradeoff between field-of-view and feature resolution, which
potentially limits the size of samples that can be scanned. For
example, we suspect that this study was conducted near the mini-
mum feature resolution required for starch detection in
grapevine, ie. ¢ 10 pum (pixel size of 3.2 um), which corre-
sponded with an 8.8 mm field of view. Thus, if the stem were
greater than 8.8 mm in diameter then it would not be entirely
visible. At higher magnification/resolution, we observed a finer
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Fig. 7 Relationship between ray and axial parenchyma (RAP) fraction
classified as full and empty vs starch content measured destructively using
enzymatic digestion in stems of Vitis spp. (linear fit, R>=0.94, P < 0.001;
gray polygon is the 95" confidence interval). Each symbol represents the
analysis of an individual plant.

detail of starch granules but the field of view becomes progres-
sively smaller. This limitation is, however, instrument-specific.
The time required for an individual scan also varies dramatically
depending on the instrument. Modern synchrotron radiation
sources allow for quick scans in <5 min, whereas benchtop X-ray
microCT scanners can take hours. Further, the damaging effects
of X-ray radiation on long-term metabolic activity of plant tissue
are not well studied, but we have observed variable responses that
depends on tissue type, species, and exposure time. These effects

s
il

BT seaa

Dark treatment

Resea u

should be considered, especially when repeatedly scanning plant
tissue. Regarding the machine learning technique presented here,
the model can be generalized to other plant species but retraining

would probably be required.

Conclusion

Here, we demonstrate the ability of X-ray microCT to detect and
quantify starch in living plants. Until now, starch could only be
measured using destructive techniques. Our novel method pre-
sents the opportunity to study carbohydrate metabolism that will
permit repeated measurements and lower across-sample variabil-
ity, all at micrometer-scale spatial resolution. Such studies on car-
bohydrate metabolism can be coupled with hydraulic studies to
improve our understanding of how plants coordinate these two
key systems underlying basic plant function, and help to resolve
current debates regarding the relative contribution of carbon
starvation and hydraulic failure to drought-induced tree mortality
(McDowell ez al., 2008; Adams et al., 2017; Schwalm ez al., 2017).
Further, as X-ray microCT is becoming increasingly common
across the plant sciences, a large amount of data is amassing, and
our technique can be applied retroactively to existing datasets to
analyze the spatial distribution of starch depletion, with simple
modifications to the algorithm to account for variability in starch
morphology and chemistry across species. We expect that in vive
starch detection should be applicable to many other plant species
found in both agricultural and natural systems, providing high

spatiotemporal detail for investigating how carbohydrate
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Fig. 8 Control (n=3; top row) vs dark-treated (n = 3; bottom row) stem cross-sections from six Vitis champini plants. Visually full (magenta) vs empty
(yellow) regions are outlined. Estimated starch values using machine learning algorithm are provided in the upper left corner of each image. Image contrast
in regions outside of ray and axial parenchymas (RAPs) was lightened to highlight RAP cellular regions.
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metabolism responds to key stresses such as shade, drought, freez-
ing, salinity, and pathogenic infection. The capacity for in vivo
observation of starch content in stems opens the door for new
experimental work aimed at directly and locally manipulating the
stem internal environment, providing time-resolved quantifica-
tion of plant nonstructural carbohydrate utilization.
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