The causes of leaf hydraulic vulnerability and its influence on gas exchange in Arabidopsis thaliana

Christine Scoffoni¹,², Caetano Albuquerque³, Hervé Cochard⁴, Thomas N. Buckley⁵, Leila R. Fletcher¹, Marissa A. Caringella¹, Megan Bartlett⁶, Craig R. Brodersen⁷, Steven Jansen⁸, Andrew J. McElrone³,⁹, Lawren Sack¹

¹Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, California 90095, USA
²Department of Biological Sciences, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032, USA
³Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
⁴Université Clermont-Auvergne, INRA, PIAF, F-63000 Clermont-Ferrand, France
⁵Department of Plant Sciences, University of California, Davis, CA 95616, USA
⁶Princeton Environmental Institute, Princeton University, NJ 08544, USA
⁷School of Forestry & Environmental Studies, Yale University, 195 Prospect Street, New Haven, CT 06511, USA
⁸Institute of Systematic Botany and Ecology, Ulm University
⁹USDA-Agricultural Research Service, Davis, CA 95616, USA

One-sentence summary: Declines in leaf outside-xylem hydraulic conductance prior to turgor loss point contribute strongly to stomatal closure, and improve performance, survival and efficient water use during drought.

Author contributions: C. Scoffoni and L. Sack designed the study. C. Scoffoni, C. Albuquerque, H. Cochard, T.N. Buckley, L.R. Fletcher, M. Caringella, M.K. Bartlett, A.J. McElrone & L. Sack contributed to data collection and/or analyses. C. Scoffoni and L. Sack wrote the manuscript with input from all authors.

Corresponding Author:
Christine Scoffoni
California State University, Los Angeles
Department of Biological Sciences
5151 State University Drive, Los Angeles 90032, California
Email: cscoffo@calstatela.edu
Abstract

The influence of the dynamics of leaf hydraulic conductance (K_{leaf}) diurnally and during dehydration on stomatal conductance and photosynthesis remains unclear. Using the model species *Arabidopsis thaliana* (ecotype Col-0), we applied a multi-tiered approach including physiological measurements, high-resolution X-ray micro-computed tomography, and modelling at a range of scales to characterize: (1) K_{leaf} decline during dehydration; (2) its basis in the hydraulic conductances of leaf xylem (K_x) and outside-xylem pathways (K_{ox}); (3) the dependence of its dynamics on irradiance; (4) its impact on diurnal patterns of stomatal conductance and photosynthetic rate; and (5) its influence on gas exchange and survival under simulated drought regimes. Arabidopsis leaves showed strong vulnerability to dehydration diurnally in both gas exchange and hydraulic conductance, despite lack of xylem embolism or conduit collapse above turgor loss point, indicating pronounced sensitivity of K_{ox} to dehydration. K_{leaf} increased under higher irradiance in well-hydrated leaves across the full range of water potential, but no shift in K_{leaf} vulnerability was observed. Modelling indicated that responses to dehydration and irradiance are likely attributable to changes in membrane permeability, and that a dynamic K_{ox} would contribute strongly to stomatal closure, improving performance, survival and efficient water use during drought. These findings for Col-0 provide a baseline for assessing variation across genotypes in hydraulic traits and their influence on gas exchange during dehydration.

Key words: aquaporins, drought, leaf water relations, plant modelling, pv-curves
Introduction

Plant growth requires a copious water supply because the rate of CO\textsubscript{2} uptake for photosynthesis depends on stomatal conductance, which results in transpiratory water loss. Because stomata close in dehydrating leaves, photosynthesis and growth depend on the efficiency of water replacement to the mesophyll. Thus, in the past two decades, many studies focusing on diverse species have shown the centrality of the plant hydraulic system in determining leaf-scale gas exchange and plant productivity (Sack and Holbrook, 2006; Brodribb et al., 2007; Scoffoni et al., 2016). Our aim was to test hypotheses for the dynamics of hydraulic traits and their influence on gas exchange during dehydration using the model species Arabidopsis. Establishing a framework for testing the influence of hydraulic traits in Arabidopsis can help address recent debates and open avenues for discovery of genetic associations in natural and mutant genotypes under moist conditions and during soil and/or atmospheric drought.

The leaf accounts for a large proportion of plant hydraulic resistance (Sack and Holbrook, 2006). Thus, theoretical and empirical studies have shown strong correlations of stomatal conductance (gs) and photosynthetic rate (A\textsubscript{max}) with leaf hydraulic conductance (K_\text{leaf}); determined as the flow rate divided by water potential driving force, in units mmol m-2 s-1 MPa-1) across species under well-watered conditions (Nardini and Salleo, 2003; Brodribb and Holbrook, 2004; Sack and Holbrook, 2006; Scoffoni et al., 2016), and within given species during dehydration (Brodribb and Holbrook, 2006, 2007; Bartlett et al., 2016; Scoffoni and Sack, 2017). A high K_\text{leaf} enabling higher gs and A\textsubscript{max} could be achieved through a high vein length per area, larger and/or more numerous xylem conduits (and/or xylem pits), and more conductive mesophyll and bundle sheath anatomy and biochemistry (Brodribb et al., 2007; Choat et al., 2008; Caringella et al., 2015; Scoffoni et al., 2015; Scoffoni et al., 2016; Stewart et al., 2018). Yet, the linkages of K_\text{leaf} and gas exchange as leaves dehydrate to turgor loss point are still under debate. Early studies suggested that K_\text{leaf} decline drives stomatal closure under high vapor pressure deficits at mid-day (Brodribb and Holbrook, 2003a; Bucci et al., 2003) and during drought (Salleo et al., 2001; Brodribb and Holbrook, 2003b; Nardini and Salleo, 2003). Several recent studies suggested that in some species, K_\text{leaf} might not decline until embolism forms in the leaf vein xylem (Brodribb et al., 2016a; Brodribb et al., 2016b; Skelton et al., 2017), which for many species does not occur until past the point of stomatal closure and bulk leaf turgor loss (Brodribb et al., 2016b; Hochberg et al., 2017; Scoffoni et al., 2017a). Similarly, xylem wall collapse may drive K_\text{leaf} declines in pine needles and minor veins of an oak.
species, but only below turgor loss point (Cochard et al., 2004a; Zhang et al., 2016). Avoiding K_{leaf} decline during transpiration when leaves are hydrated above turgor loss point has been suggested as adaptive, maintaining leaf water potential and open stomata, though at the risk of sustaining water potentials that would induce xylem cavitation under high vapor pressure deficits (Brodribb and Holbrook, 2006). Numerous studies in the last decade have shown that species differ in whether K_{leaf} declines at milder, similar or more severe leaf water potentials than at stomatal closure, and that K_{leaf} decline depends mechanistically on processes in multiple tissues—the venation, bundle sheath, and mesophyll pathways of liquid and vapor transport (reviewed by Scoffoni and Sack, 2017). Indeed, a meta-analysis of the literature found that on average, across species (and methods for K_{leaf} determination), K_{leaf} declined by 30-80% before turgor loss point (Scoffoni and Sack, 2017). Recent work focusing on partitioning leaf xylem and outside-xylem resistances during dehydration suggested the outside-xylem hydraulic conductance (K_{ox}) as the primary driver of K_{leaf} decline (Trifilo et al., 2016; Scoffoni et al., 2017a; Scoffoni and Sack, 2017), which could be triggered by the loss of cell connectivity, cell shrinkage, and/or changes in membrane aquaporin activity (Laur and Hacke, 2014b; Scoffoni et al., 2014; Scoffoni et al., 2017a), potentially mediated by effects of ABA in the bundle sheath (Pantin et al., 2013). A recent study in rice has attributed to K_{leaf} decline a strong causal role in driving stomatal closure during dehydration (Wang et al., 2018).

Debate has also focused on the light response of K_{leaf}. Previous studies have found many species to exhibit a rapid enhancement of K_{leaf} in response to increased irradiance (Sack et al., 2002; Nardini et al., 2005b; Tyree et al., 2005; Cochard et al., 2007; Scoffoni et al., 2008; Voicu et al., 2008; Guyot et al., 2012; Xiong et al., 2018), but not all (Sack et al., 2002; Gasco et al., 2004; Tyree et al., 2005; Scoffoni et al., 2008; Xiong et al., 2018). Activation of PIP$_{2,1}$ and PIP$_{2,2}$ aquaporins under high irradiance at high water potential has been shown to also enhance K_{leaf} in some (Cochard et al., 2007), though not all species (Voicu et al., 2009). A higher K_{leaf} under high light could potentially help buffer rapid changes in VPD and prevent stomata from closing (Cairns Murphy et al., 2012; Scoffoni et al., 2015). In Arabidopsis, one study estimated hydraulic conductance by pushing water into entire rosettes suspended underwater in a dark pressure chamber, and found it was higher for leaves acclimated to dark rather than high irradiance (Prado et al., 2013), though no study has investigated this response at the leaf level.
Here, we applied complementary physiological, imaging, and modelling approaches (Table 1) to assess \(K_{\text{leaf}} \) dynamics with dehydration and irradiance, and their role in driving diurnal patterns of gas exchange in Arabidopsis. We tested the hypotheses in Arabidopsis that \(K_{\text{leaf}} \): (1) is high under well-hydrated conditions, but declines strongly during dehydration; (2) declines due to changes in \(K_{\text{ox}} \) but not xylem embolism formation or conduit collapse; (3) responds to irradiance; (4) influences diurnal patterns of stomatal conductance and photosynthetic rate; and (5) shows dynamics that confer higher water-use efficiency, and that would thus benefit plant performance under simulated soil drying.

Results

Leaf hydraulics and gas exchange and their responses to leaf dehydration and irradiance in Arabidopsis

Arabidopsis Col-0 exhibited high maximum leaf hydraulic conductance (\(K_{\text{leaf}} \)), stomatal conductance (\(g_s \)), minimum epidermal conductance (\(g_{\text{min}} \)), as well as light-saturated photosynthetic rate (\(A_{\text{area}} \)) (Figure 1, Figure 2, Table 2). The partitioning of hydraulic resistances in the leaf indicated a similar distribution of resistances in the xylem and outside-xylem pathways (45.6 vs. 54.4% respectively; Table 2).

Arabidopsis showed a strong vulnerability to dehydration in \(K_{\text{leaf}} \) and gas exchange (Figure 1). Notably, the range of water potential measured on intact plants diurnally, and on detached leaves during bench dehydration was similar (Figure 1, Figure 2). \(K_{\text{leaf}} \) responded non-linearly to dehydration, with steep declines before 50% loss of its initial \(K_{\text{leaf}} \) by -0.17 MPa (\(K_{\text{leaf}} P_{50} \)), and gradually slowing down its response to further dehydration (Table 2, Figure 1). Both \(g_s \) and \(A_{\text{area}} \) responded linearly to declining \(\Psi_{\text{leaf}} \) (Figure 2), reaching 50% loss of initial rates by -0.37 and -0.38 MPa respectively, and 95% loss at similar \(\Psi_{\text{leaf}} \) values of -0.71MPa (Table 2). At turgor loss point, \(K_{\text{leaf}} \) had declined by ca. 88%, and stomata were nearly fully closed (Table 2, Figure 1).

Leaves acclimated to high irradiance had significantly higher \(K_{\text{leaf}} \) values than leaves acclimated to low irradiance, with a 60% enhancement of \(K_{\text{leaf}} \) from low to high irradiance in well-hydrated leaves of Col-0. (Figure 1; \(t \)-test done on residuals of \(K_{\text{leaf}} \), i.e., difference of observed values relative to those predicted from the best fit function through all data combined: \(K_{\text{leaf}} = 8.33 + 83.7 \times \exp(-(9.47 \times \Psi_{\text{leaf}})) \)). Residuals for \(K_{\text{leaf}} \) were 7.4 mmol m\(^{-2}\) s\(^{-1}\) MPa\(^{-1}\) higher under high irradiance across the entire vulnerability curve (\(p = 0.01 \)), 7.9 mmol m\(^{-2}\) s\(^{-1}\) MPa\(^{-1}\) higher
considering only leaves above turgor loss point \((p = 0.01) \), and 13.9 mmol m\(^{-2}\) s\(^{-1}\) MPa\(^{-1}\) higher considering only leaves at hydration above -0.2MPa \((p = 0.04) \). However, leaves acclimated to high and low irradiance were similar in their \(K_{\text{leaf}} P_{50} \) (-0.17 vs. -0.16 MPa respectively; Figure 1).

Diurnal responses of gas exchange

Photosynthetic and stomatal responses were measured over the course of two days, from 0900 to 1800. Our results showed that the diurnal pattern of whole-plant hydraulic conductance and gas exchange reflected the dynamics of \(\Psi_{\text{leaf}} \), as evidenced by the strong trends of \(K_{\text{plant}}, g_s \) and \(A_{\text{max}} \) versus \(\Psi_{\text{leaf}} \) \((r^2 = 0.45-0.81; p < 0.02; \) Figure 2). Of all the potential environmental drivers, vapor pressure deficit (VPD) most strongly correlated with \(g_s \) dynamics diurnally \((r^2 = 0.18; p = 0.002; \) Supplemental Figure S1).

Independent effects analysis of potential drivers of diurnal dynamics in \(g_s \), including environmental factors and \(\Psi_{\text{leaf}} \) showed that \(\Psi_{\text{leaf}} \) was the most important statistically, contributing 77% towards the diurnal variation (Supplemental Figure S2). The VPD contributed 11%, and temperature, PAR and time of day each contributed only 4% to the observed variation (Supplemental Figure S2).

Testing for vein xylem embolism and collapse during leaf dehydration using micro-computed tomography

We scanned leaves using *in vivo* micro-computed tomography for dehydrated plants to visualize potential xylem embolism. In 14/18 leaves attached to plants that spanned the observed range of \(\Psi_{\text{leaf}} \) (-0.05 to -0.87 MPa), no gas embolism was observed in major or minor veins (Figure 3). In 4/18 scans, we observed 1-2 embolized conduits in the midrib and/or secondary veins; notably, these leaves were not the most dehydrated \((\Psi_{\text{leaf}} = -0.13 \text{ to } -0.45 \text{ MPa}; \) Figure 4; Table 3) but were within the same range as other leaves that did not exhibit embolism. In all three leaves that showed embolized midrib conduits, the embolism spanned the entire length of the scanned section, and we were unable to measure the total vessel length (Figure 4; Table 3). For two leaves, the embolized midrib conduit extended into a secondary vein. In the fourth leaf, an isolated embolised conduit in the secondary vein was observed (Figure 4, Table 3). All embolized conduits were of average diameter (Table 3; midrib conduit diameters measured under light microscopy ranged from 2.79 to 10.3 μm). No collapsed conduits were observed in midrib and secondary vein conduits at the
range of water potentials investigated. The resolution of the micro-CT scans was not sufficient to
determine whether conduit collapse occurred in higher-order veins.

Modelling the impact of embolism and collapse on K_x
Spatially explicit modelling of the leaf xylem (Table 1) showed that the very low level of observed
xylem conduit embolism would reduce leaf xylem hydraulic conductance (K_x) by 1.2 to 4.7%
(Table 3). Because resolution was not sufficient to determine whether conduit collapse occurred in
higher-order veins, we simulated the potential impact of such collapse if it had occurred. These
simulations showed that if higher-order veins were to collapse to the same % of conduit diameter
as recently reported for minor veins of *Quercus rubra* (Zhang et al., 2016), this would decrease K_x
by 3-7.5% (Table 3). Under a more extreme scenario in which collapse of tertiary and minor veins
caused a 50% decline in their conductivity, K_x would be reduced by 12-17% (Table 3), which
would decrease K_{leaf} by 7-9%.

Modelling the putative causes of K_{ox} decline
Spatially explicit modelling of the outside-xylem pathways using MOFLO 2.0 (Table 1) suggested
that the main factor accounting for the decline in K_{ox} observed at -0.5 MPa was most likely
reduction of cell membrane permeability in combination with an apoplastic barrier at the bundle
sheath (Figure 5). Under high irradiance, an 80% reduction of cell membrane permeability would
cause a 68.4% decrease in K_{ox}; adding an 80% reduction in cell connectivity would further decrease
K_{ox} by 0.2% (Figure 5). When performing these simulations with no apoplastic barrier at the
bundle sheath, the impact of an 80% reduction of cell membrane permeability caused only a 24.5%
decrease in K_{ox} (Figure 5). Simulating the impact of changes of temperature gradients due to light
absorption changed the percent loss of K_{ox} by 1-3% across simulations (Supplemental Table S1).
Finally, simulating the impact of cell shrinkage from full turgor to -0.5 MPa resulted in an increase
in K_{ox} by 7 to 15%, due to the increase in vein density caused by leaf shrinkage and the consequent
decrease in outside-xylem water flow pathlengths (Figure 5).

Partitioning the contribution of K_{leaf} vulnerability to g_s decline
In a transpiring leaf, a low Ψ_{leaf} would result from low water potentials proximally to the leaf (i.e.,
in the soil or roots; Table 1), and to the transpiration-driven water potential drop across the leaf,
which is greater, given K_{leaf} vulnerability. Thus, given that g_s declines with Ψ_{leaf}, K_{leaf} vulnerability will amplify the reduction of g_s at a given soil water potential and vapor pressure deficit. Using a partitioning analysis, we applied the observed parameters of g_s and K_{leaf} decline in Arabidopsis to compute the marginal % contribution of K_{leaf} vulnerability to the decline of g_s (Table 1). Our results showed that K_{leaf} vulnerability contributes strongly to g_s decline in transpiring leaves early in dehydration, due to amplification of Ψ_{leaf} decline; when g_s declines by 30%, 70% of this response is due to K_{leaf} vulnerability rather than low water potential proximal to the leaf (Figure 6). The contribution of K_{leaf} vulnerability to g_s decline remains >40% until g_s declined by 50%, and becomes less important as stomata approach full closure. When g_s has declined by 95%, the contribution of K_{leaf} vulnerability to g_s decline is < 1%.

Using the SurEau whole-plant physiology model to estimate the influence of K_{leaf} decline on gas exchange, productivity and survival

We tested the importance of K_{leaf} vulnerability prior to turgor loss point in reducing g_s and photosynthesis on plant carbon balance and survival in simulations using SurEau (Martin-StPaul et al., 2017) (Figure 7A-D; Table 1). In simulations, the experimentally observed K_{leaf} vulnerability caused an up to -0.36 MPa lower Ψ_{leaf} at midday under well-hydrated conditions (yellow and red lines), compared to constant K_{leaf} simulations (light and dark blue lines) (Figure 7B). This lower Ψ_{leaf} in turn reduced g_s and cumulative CO$_2$ assimilation ($A_{\text{n, tot}}$) by up to 62 and 17% respectively under well-hydrated conditions (Figure 7A-B), but cumulative water-use efficiency (calculated as $A_{\text{n, tot}}$/total transpiration) increased by 28% (inset in Figure 7B). Given finite soil water supply in these simulations, this higher water-use efficiency led to up to 24% higher $A_{\text{n, tot}}$ over the entire course of the simulated drought. Indeed, because K_{leaf} vulnerability results in lower g_s during the early stage of the drought, the soil water potential (approximated as nighttime Ψ_{leaf} in Figure 7B) is maintained at higher levels as drought ensues, leading to the maintenance of higher g_s during later drought (Figure 7A). Additionally, because Ψ_{leaf} does not drop as fast during the course of the drought, these simulations showed that given K_{leaf} vulnerability, the onset of leaf xylem embolism occurs later during drought such that plants survive up to 6 days longer under drying soil (Figure 7D). These simulations resulted in similar findings whether or not K_{root} was set as vulnerable or constant, highlighting K_{leaf} vulnerability as a main driver of improved water-use efficiency, $A_{\text{n, tot}}$ and survival during soil drying.
Drought tolerance in Arabidopsis

Arabidopsis Col-0 exhibits low leaf mass per area, a high degree of area shrinkage during dehydration, high minimum epidermal conductance (g_{min}), high osmotic potential at full turgor and turgor loss point, low modulus of elasticity and relative water content at turgor loss point (Table 1).

Discussion

Our results demonstrate a potential strong role for outside-xylem pathways in the decline of K_{leaf} with leaf dehydration, contributing to stomatal closure and the reduction of photosynthetic rate in Arabidopsis thaliana (Col-0). Strong declines in K_{leaf} were associated with declines in K_{plant}, g_s and A_{area}, at water potentials where no significant embolism was observed using microCT. The absence of leaf xylem embolism before stomatal closure and hydraulic decline point to changes in outside-xylem pathways as the cause of observed K_{leaf} decline and imply no functional role of xylem dysfunction in this species’ response of gas exchange to leaf dehydration. Modelling showed that K_{leaf} vulnerability has a strong causal role in determining stomatal closure, and further, that K_{leaf} vulnerability would improve plant carbon balance and survival during drought.

Drivers of leaf hydraulic conductance decline during dehydration

Our results suggest that changes in outside-xylem pathways are the main drivers of the response of K_{leaf} to dehydration in Arabidopsis. MicroCT imaging showed that embolism was rare in major vein xylem conduits and nonexistent in minor veins. Only one or two embolized conduits (representing on average 6-11% of the conduits in the midrib) were found in 4/18 samples, with no trend of embolism with increasing water stress prior to turgor loss point. This low vulnerability to embolism in leaves parallels findings for Arabidopsis inflorescence stems, which have P_{50} values lower than -2.5 MPa (Tixier et al., 2013). The few rare observed leaf vein xylem emboli likely arose from methodological artifacts. In the 3/4 samples in which embolized conduits were observed, the embolized conduit spanned the entire section. One possibility is that air may have entered the conduit when plants were removed from the soil for dehydration, if air entered conduits from damaged roots, and conduits were continuous into the major veins of scanned leaves. Similarly, air may have entered when the two leaves were excised from the plant for initial water
potential measurement, if conduits spanned from these leaves to others in the rosette including the scanned leaves. Alternatively, these few embolisms could be the result of defects in the development of these conduits (Pickard, 1981; Tyree et al., 1994). Indeed, we found a single isolated embolism event occurred in a secondary vein of one of our samples. Such isolated embolism events have been reported in leaf veins of other angiosperm species (Scoffoni et al., 2017b) and stem xylem (Brodersen et al., 2013; Choat et al., 2015; Choat et al., 2016).

MicroCT imaging did not reveal any conduit collapse in the midrib or secondary veins across the range of observed water potentials. Since the resolution of the microCT imaging did not permit assessment of xylem conduit collapse in higher-order veins, we tested the potential effect of collapse of minor veins on K_{leaf} using a spatially explicit model of the leaf vein system. These simulations suggested that if xylem conduit collapse in the tertiary and minor veins were to occur within the range of water potentials in which K_{leaf} declined, this collapse would have a quantitatively small effect, i.e., causing <10% decline in K_{leaf} at -0.5MPa. This finding was consistent with previous model results showing that extreme collapse of minor veins would cause K_{leaf} to decline only by up to 4% for four diverse species (Scoffoni et al., 2017b). Previous studies found collapse of xylem conduits in pine needles and the minor veins of oak leaves, but only past turgor loss point, and suggested this could act as a circuit breaker to protect the stem xylem from embolism formation (Cochard et al., 2004a; Zhang et al., 2016). An early decline in outside-xylem pathways would act in a similar way, hastening stomatal closure, before xylem collapse would occur (Scoffoni et al., 2017a; and see following sections). Past turgor loss point, the Arabidopsis leaf undergoes drastic shrinkage in area and thickness, and it is likely that xylem in the midrib and higher-order veins would collapse, especially as the Arabidopsis xylem cell walls are helicoidal, and mostly consisting of thick primary walls (Figure 8). Future studies are needed to investigate the collapse of xylem and its influence on the rehydration capacity of strongly dehydrated leaves.

Response of leaf hydraulic conductance to dehydration and coordination with gas-exchange

In Arabidopsis, we did not observe any embolism in leaf xylem conduits prior to, or even moderately past the point of stomatal closure and turgor loss point. This finding is consistent with recent work on tomato and grapevine showing stomata closed before any embolism were observed using an optical visualization technique (Hochberg et al., 2017; Skelton et al., 2017). Here, we confirm this finding for the first time using microCT on Arabidopsis. This finding is also consistent
with a growing body of literature showing that typically no xylem embolism is observed prior to
turgor loss point (Charra-Vaskou et al., 2012; Delzon and Cochard, 2014; Bouche et al., 2016;
Brodribb et al., 2016b; Scoffoni et al., 2017a; Scoffoni et al., 2017b). A recent study on sunflower
showed that xylem embolism occurs after turgor loss point even in plants that acclimate to drought:
plants grown under water-limited conditions adjusted osmotically and had a more negative turgor
loss point (-0.3 MPa shift), and leaf xylem P_{50} also shifted to a more negative value (-0.6 MPa
shift) (Cardoso et al., 2018).

The diurnal variation observed in stomatal conductance (g_s) and net photosynthetic rate per
leaf area (A_{area}) was strongly driven by leaf water status, i.e., Ψ_{leaf}, as shown by our model-fitting
analyses. Further, our analyses indicated that the dynamics of Ψ_{leaf}, and thus of g_s and A_{area} were
strongly driven by the dehydration-induced decline of K_{leaf}, in turn, resulting from changes in
outside-xylem pathways. Thus, we found that in Arabidopsis, K_{leaf} declines more rapidly than g_s
with dehydration, increasing the ratio of g_s/K_{leaf}, such that transpiration would amplify the decline
in Ψ_{leaf}, and consequently that of g_s. Indeed, 40-65% of g_s decline was attributable to K_{leaf} decline,
for leaves dehydrated to less than 50% of stomatal closure. For more strongly dehydrated leaves,
given their reduced stomatal conductance, the transpiration-driven amplification of Ψ_{leaf} and g_s
decline by K_{leaf} vulnerability are small, and declining Ψ_{leaf} due to low soil water potential and/or
exogenous signals such as ABA or sugar production would be responsible for driving stomata to
full closure. The direct mechanisms for stomatal closure with declining Ψ_{leaf} require further
research. While most proximally, stomatal closure relates to solute transfer from guard cells to
pavement cells, this could be driven by declining cell volume, turgor, osmotic concentration or
water potential, in the epidermis and/or mesophyll, partially or fully mediated by ABA
accumulation, which in turn may be associated with declining cell volume and K_{leaf} decline in
dehydrating leaves (McAdam and Brodribb, 2016; Sussmilch et al., 2017; Sack et al., 2018).
Indeed, ABA signaling may contribute to stomatal closure both directly at the guard cells and also
by contributing to K_{leaf} decline in dehydrating leaves by reducing cell membrane permeability in
the bundle sheath and mesophyll via changes in aquaporin expression (Shatil-Cohen et al., 2011;
Pantin et al., 2013). Indeed, our MOFLO 2.0 simulations showed that K_{ox} decline was best
explained by reduced cell membrane permeability and to a lesser extent, cell connectivity. In
Arabidopsis, stress-induced changes in cell membrane permeability, mediated by aquaporins, can
have a strong impact on root hydraulic conductance (Javot and Maurel, 2002).
Alternatively, some studies have suggested that photosynthetic rate and carbon sink activities could regulate stomata and plant hydraulics (Nikinmaa et al., 2013; Körner, 2015; Rockwell et al., 2018). Indeed, this is well known in cropping systems such as grapevine, where the presence of strong sinks such as fruits have been shown to stimulate photosynthesis (Hofäcker, 1978; Petrie et al., 2000). Recent studies have found that excess cellular sugar concentrations under high irradiance, and/or during dehydration could trigger stomata closure (Nikinmaa et al., 2013; Rockwell et al., 2018). Excess sucrose may be transported to the guard cells by the transpiration stream, and the subsequent increase in osmolytes at the guard cell apoplast could induce stomatal closure in some species, especially during periods of high photosynthetic rates (Lu et al., 1995; Lu et al., 1997; Kang et al., 2007a; Kang et al., 2007b). Indeed, the increase in sucrose concentration at the guard cells could act as more than a simple osmolyte, as it can depolarize the guard cell plasma membrane, activating potassium channels (Jarzyniak and Jasiński, 2014), and an increase in the level of sugar-sensing enzymes in the guard cells can accelerate stomatal closure by stimulating ABA production (Kelly et al., 2013; Van Houtte et al., 2013; Li et al., 2016; Li et al., 2018; Medeiros et al., 2018). Additionally, excess sucrose concentrations can decrease K_{ax} and thus K_{leaf}, potentially via deactivation of aquaporins (Kelly et al., 2017).

In conclusion, K_{leaf}, g_s and A_{area} show a coordinated decline during leaf dehydration in Arabidopsis, with a potentially strong direct effect of declining K_{leaf} in inducing stomatal closure via a decrease in water potential. The decline in K_{leaf} and stomatal conductance may be jointly driven by accumulation of sugar and/or ABA accumulation in dehydrating leaves, or K_{leaf} declines may contribute to this accumulation. Future studies are needed to decipher the exact sequence of events leading stomata to close.

Putative role of K_{ox} decline in improving plant carbon balance, water-use efficiency and survival during drought

Why would the water transport pathways outside the xylem decline in efficiency during dehydration prior to turgor loss point if this reduces gas exchange? Results from SurEau simulations indicated that a vulnerable K_{ox} (and thus K_{leaf}) above turgor loss point leads to greater water-use efficiency, and cumulative CO$_2$ assimilation, as well as protection of xylem from embolism, and increased plant survival during drought. Simulated plants with K_{ox} declining prior to turgor loss point operated on average at a lower K_{ox} value than plants with a K_{ox} held constant.
(set to the average value measured at Ψleaf of -0.1 to -0.2 MPa, i.e., the range at which gs was at its maximum). This dynamic Kox with water potential caused an up to 60% decline in gs but only an up to 12% decline in CO2 assimilation, resulting in a higher water-use efficiency and greater overall assimilation when considered over the entire period of soil drying. This benefit for low Kox raises the question of why plants should invest in a high Kox (or Kleaf) in maximally hydrated leaves. Indeed, high Kleaf values at Ψleaf above -1.0 MPa have at times been neglected when constructing vulnerability curves (Blackman et al., 2012; Blackman et al., 2014) under the presumption that leaves simply do not operate at such high water potentials in planta. However, a high Kox (and thus Kleaf) in well-hydrated leaves which declines during dehydration prior to turgor loss point would offer advantages; it would enable high gs and greater CO2 assimilation under well-watered conditions. This would be particularly beneficial for a short-lived species such as Arabidopsis, which is required to grow rapidly when water availability is high. Previous studies have found that maximum Kox (and Kleaf) was high and declined rapidly with water potential in herbs (Scoffoni et al., 2011; Nolf et al., 2016; Scoffoni et al., 2017a) than long-lived drought tolerant chaparral trees (Scoffoni et al., 2017a). Ephemeral species such as Arabidopsis, or desert plants with short-lived leaves, would especially benefit from high CO2 assimilation rates, and thus high Kleaf after a rainfall event, and “gear down” by reducing Kleaf and thus transpiration rates when water becomes scarce, to improve their water-use efficiency and survive longer under soil drying (Grubb, 1998). In these simulations, root hydraulic vulnerability had a small effect on water-use efficiency in Arabidopsis. The much greater effect of leaf over root is due to the very high proportion of hydraulic resistance in the leaf (85.7%), due to the lack of stem in the vegetative phase of this rosette species. The hydraulic vulnerability of roots and their influence on the control of gas exchange is still under debate given experimental challenges. Debate is ongoing over whether root xylem is highly vulnerable (Hacke and Sauter, 1996; Hacke et al., 2000), or resistant (Rodriguez-Dominguez et al., 2018) to xylem embolism. However, just as in leaves (Scoffoni et al., 2017a), the root extra-xylem flow pathways might be more vulnerable. In grapevine, lacunae formation in fine root cortical cells may cause a strong decline in Kroot under drying-soil conditions, which would help decouple the plant from drying soil and preserve its vascular system from embolism (Cuneo et al., 2016). Notably, plant competition for soil water is not simulated in the SurEau model. As such, we assume that plants have evolved to efficiently utilize soil water, and not overspend it (Cowan, 1982; Buckley et al., 2017b).
The light response of leaf hydraulic conductance in Arabidopsis

Maximum K_{leaf} for well-hydrated leaves often increases in response to light; this response has been found for 15 of 30 species tested, in species of 23 plant families (Sack et al., 2002; Gasco et al., 2004; Tyree et al., 2005; Cochard et al., 2007; Scoffoni et al., 2008; Voicu et al., 2008; Guyot et al., 2012; Xiong et al., 2018). Further, in some species, the light enhancement of K_{leaf} is reduced in dehydrated leaves, or, equivalently for those species, K_{leaf} declines with dehydration more steeply under high irradiance (Guyot et al., 2012). In Arabidopsis, a previous study suggested that the hydraulic conductance of entire rosettes of Arabidopsis had increased when acclimated to low rather than high irradiance (Prado et al., 2013). In our experiments using the evaporative flux method, we found significantly higher K_{leaf} values throughout the range of water potentials tested for leaves acclimated to high irradiance, with a 60% enhancement of K_{leaf} from low to high irradiance in well-hydrated leaves of Col-0. Discrepancies between these results may have arisen due to methodological differences, given that in the study of Prado et al. (2013), hydraulic conductance was measured by pushing water inward through the stomata of entire rosettes suspended under water in darkness within a pressure chamber.

Notably, the light enhancement in K_{leaf} found in Arabidopsis did not result in a shift in P_{50}. This finding indicates a proportional shift to lower values under low irradiance, throughout the range of water potentials, contrary to findings for four woody species in which leaves acclimated to high irradiance were more vulnerable to K_{leaf} decline with dehydration (Guyot et al. 2012). The light enhancement of K_{leaf} would provide a greater hydraulic supply to meet the demand of leaves acclimated to high irradiance, i.e., given strong and rapid dynamics of air temperature and humidity and wind, and thus higher vapor pressure deficit and leaf boundary layer conductance. Further, given strong transient dehydration during transpiration under these conditions, the higher K_{leaf} would contribute to rapid mesophyll rehydration at high water potential and thus enable the recovery of g_s and photosynthetic rate. The light enhancement of K_{leaf} could be caused by stronger temperature gradients throughout the leaf under high light and/or changes in aquaporin expression (Cochard et al., 2007). Our simulations of K_{ox} under low and high light using MOFLO 2.0 indicated that K_{leaf} would be minimally enhanced by temperature gradients in the leaf caused by light absorption, pointing to a role for aquaporins instead. This is consistent with the molecular evidence that aquaporin expression is sensitive to light (Cochard et al., 2007; Ben Baaziz et al., 2012) and...
that multiple aquaporin isoforms are involved in a range of responses such as K_{leaf} decline during drought and K_{leaf} light enhancement (Cochard et al., 2007; Pou et al., 2013; Laur and Hacke, 2014b, a). Furthermore, aquaporins may also be involved in cell rehydration (Marco et al., 2016). Finally, aquaporins have also been suggested to play a role in a rapid enhancement of K_{leaf} when Arabidopsis is suddenly exposed to low relative humidity, compensating for the increased evapotranspiration, and allowing stomata to remain open (Levin et al., 2007).

Contribution of hydraulic traits to Arabidopsis thaliana whole-plant physiology

Arabidopsis Col-0 has high values of K_{leaf}, g_s and A_{area} relative to previously published values of diverse angiosperm species (Flexas et al., 2013; Scoffoni and Sack, 2017), and displays strong sensitivity in K_{leaf} and gas exchange to dehydration. This physiological behavior is consistent with Arabidopsis’ ruderal ecology, establishing and producing flowers and seeds in open or disturbed habitats in spring/early summer (Koornneef et al., 2004). The high values of K_{leaf} were driven by an especially high K_{ox} ($106 \text{ mmol m}^{-2} \text{s}^{-1} \text{MPa}^{-1}$). This high K_{ox} is not untypical in herbs; in *Salvia canariensis*, maximum K_{ox} reached $231 \text{ mmol m}^{-2} \text{s}^{-1} \text{MPa}^{-1}$ (Scoffoni et al., 2017a). Notably, a high K_x, K_{ox} and K_{leaf} are often achieved with allocation to substantial vein length per area (VLA), which increases flow paths in parallel within the xylem and reduces flow distance outside the xylem (Sack and Scoffoni, 2013); Arabidopsis possesses a relatively low VLA but flow distance is strongly reduced by its very thin leaf, which would also reduce K_{ox} (Brodribb et al., 2007; Buckley et al., 2015). Furthermore, a high aquaporin activity, and/or cell wall permeability especially at the bundle sheath could potentially influence K_{ox}; across several Arabidopsis mutants, maximum K_{leaf} was associated with an anatomical index of bundle sheath conductivity (Caringella et al., 2015). The high K_x value could potentially arise from xylem structure, i.e., the numbers and sizes of xylem cells within minor veins (Caringella et al., 2015; Stewart et al., 2018), in combination with high conductance between xylem conduits. Indeed, our TEM imaging showed very little secondary lignification of xylem conduits throughout the midrib and other vein orders (Figure 8), such that the bulk of midrib conduit walls are effectively one large pit membrane (i.e., primary un lignified wall) with water potentially leaking throughout the surface, a structure that would strongly reduce pit wall resistance and thus total xylem resistance (Choat et al., 2008).

Arabidopsis Col-0 also exhibits strong drought sensitivity, with its very low leaf mass per area (Wright et al., 2004), a very high degree of area shrinkage during dehydration (58% shrinkage
when dry), high minimum epidermal conductance (g_{min}), very high osmotic potential at full turgor, low modulus of elasticity and relative water content at turgor loss point, and a turgor loss point that is among the highest values reported across angiosperm species (Bartlett et al., 2012), similar to that of the water potential at stomatal closure (g_{s95}) and at 88% loss of K_{leaf}, around -0.7MPa. This detailed characterization of Arabidopsis Col-0 hydraulics traits, and their dynamics during leaf dehydration and implications for whole-plant responses highlights useful avenues for high throughput phenotyping, and the elucidation of genetic mechanisms controlling these key traits, which would be loci for manipulation of gas exchange and drought tolerance.

Material and methods

Plant material and growth conditions
Measurements were performed on Arabidopsis thaliana Col-0 (ecotype Colombia), hereafter referred to as Arabidopsis, grown continuously from December 2015 through November 2016. We grew Arabidopsis thaliana in a climate-controlled greenhouse at the University of California, Los Angeles. Seeds were sown in lawns in pots (3.13” width x 4.88”length x 2.31” deep) in soil (1:1:2:1:1 mixture of washed plaster sand, loam, peat moss, perlite, vermiculite), and cold-acclimated at 4°C for three days in a chamber, then brought to the temperature-controlled greenhouse (minimum, mean, and maximum values for temperature, 19.3°C, 22.5°C, and 33.2°C; for humidity, 24%, 63%, and 92%; for irradiance (from 0900 to 1600), 11.2, 169, 1369 µmol photons m$^{-2}$ s$^{-1}$). We recognize that many researchers often grow Arabidopsis in growth chambers under <300 µmol photons m$^{-2}$ s$^{-1}$ irradiance, and future work should consider the variation in leaf physiology, morphology and anatomy driven by this lower irradiance. We chose to grow Arabidopsis in a greenhouse setting where plants are exposed to light fluctuations, with temporary high light peaks, as is experienced in the field. Indeed, this has been shown to impact plant growth (Poorter et al., 2016). Further, growing plants under such high irradiance means that these were not light-limited, and thus, our findings can be compared with those for other species grown without light limitation, as is typical in studies of plant hydraulic physiology.

When plants had true leaves after approximately one week, they were thinned to one individual per pot. Plants were watered regularly to keep soil moist. After approx. 6 weeks, at which points plants had >10-20 leaves, mature and healthy leaves were chosen for gas exchange, hydraulic and x-ray micro-computed tomography measurements.
Leaf hydraulic conductance

Pots were transported to the laboratory, watered and enclosed overnight in plastic bags filled with wet paper towels to ensure a saturated atmosphere. To obtain a vulnerability curve spanning a range of leaf water potential (Ψ_{leaf}), well-hydrated and dehydrated leaves were measured. To obtain K_{leaf} values at high Ψ_{leaf}, mature and healthy leaves were directly cut at their base under water and their petioles placed in a petri dish containing ultra-pure water (0.22 μm Thornton 200 CR; Millipore) prior to being connected to the evaporative flux system described below. To obtain K_{leaf} values at low Ψ_{leaf}, individuals were removed from the soil and dehydrated on the bench for 0.25-2 hours, after which they were placed in bags which had previously been exhaled into, within a second bag filled with wet paper towels, to ensure high vapor and CO$_2$ concentration, to reduce stomatal opening and facilitate equilibration for 30 min. Two leaves were then measured for initial Ψ_{leaf}, using a pressure chamber (Plant Moisture Stress Model 1000; PMS Instrument Co, Albany, OR, USA), with a grass fitting in the compression lid; for a few leaves with round petioles, silicon adaptors were used (Shatil-Cohen et al., 2011). On average, the two leaves measured for initial Ψ_{leaf} differed by 0.051 MPa ± 0.008 standard error. A third mature and healthy leaf from the dehydrated individual was measured for K_{leaf}. After the leaf petiole was cut under water, it was gently wrapped with parafilm and connected via tubing to a water source on a balance (±10 μg, models XS205 and AB265; Mettler Toledo, Columbus, OH, USA), which logged the flow rate into the leaf every 5 s to a computer. The leaf was placed over a fan and under a light source (>1000 μmol m$^{-2}$s$^{-1}$; model 73828, 1000 W UV filter; SearsRoebuck, Hoffman Estates, IL, USA). A water bath was placed between the leaf and the light to avoid overheating the leaf, which was kept between 23 and 28°C as measured using a thermocouple (Cole-Parmer). After a minimum of 30 min to ensure light acclimation (Scoffoni et al., 2008) and once the flow had stabilized with no upward or downward trend, the average steady state flow rate for the last 5 min was recorded and leaf temperature was measured (Cole-Parmer). The leaf was rapidly removed from the system, its petiole dabbed dry, and placed in a bag which had previously been exhaled into. The bagged leaf was placed into a second bag filled with wet paper towels, and left to equilibrate for 30 min, after which final Ψ_{leaf} was measured. Leaf area was manually traced onto paper, scanned, and measured using ImageJ software (version 1.46r; National Institutes of Health). Leaf hydraulic conductance (K_{leaf}) was calculated as the flow rate divided by the leaf water potential driving force (the water
potential of the water fed to the petiole \([0 \text{ MPa}] \text{\ minus measured } \Psi_{\text{leaf}}, \text{ normalized by leaf area and corrected for the dependence of water viscosity on temperature (to a reference value of } 25^\circ \text{C; Weast, 1974 ; Yang and Tyree, 1993); this correction also approximately applies for the temperature dependence of vapor phase transport across this range of temperature (Buckley, 2015). Leaf hydraulic vulnerability curves were obtained as the plot of } K_{\text{leaf}} \text{ vs. the most negative } \Psi_{\text{leaf}} \text{ experienced by the leaf (either the initial or final).}

\[K_{\text{leaf}} \text{ vulnerability curves were measured under very low laboratory irradiance (light source off; } <3 \text{ } \mu\text{mol photons m}^{-2} \text{s}^{-1} \text{) and high irradiance (}>1000 \text{ } \mu\text{mol m}^{-2} \text{s}^{-1}). \text{ Measurements in very low and high irradiance were performed on the same day using leaves taken from the same individuals when possible, i.e., when two leaves from the same individual were mature and healthy. Notably, the aim of this experiment was to test for a rapid light enhancement of } K_{\text{leaf}} \text{ for high-light–grown individuals. Future studies are needed to investigate the plasticity in } K_{\text{leaf}} \text{ and other physiological and morphological traits for Arabidopsis across different light growth regimes, as found to be important in a study of species of Hawaiian lobeliads (Scoffoni et al., 2015).}

\text{Leaf xylem hydraulic conductance}

\text{Leaf xylem hydraulic conductance was measured for six leaves (taken from six different individuals) using the vacuum pump method (Kolb et al., 1996; Nardini et al., 2001; Sack et al., 2004; Scoffoni and Sack, 2015; Trifilo et al., 2016). Briefly, individuals were rehydrated in the laboratory overnight, and kept in dark plastic bags filled with wet paper towels to ensure high humidity. The next morning, a leaf was cut off the plant under ultra-pure water and placed in a petri dish over a white light transilluminator table (Model TW, UVP, Upland, CA, USA) to allow visualization of the fourth-order veins (=minor veins). Using a fresh scalpel, 8-15 cuts per cm}^2 \text{ of leaf area were made to the lamina, severing minor veins, to ensure that outside-xylem pathways would be bypassed (Sack et al., 2004; Nardini and Salleo, 2005; Nardini et al., 2005b; Sack et al., 2005). Great care was taken to avoid cutting major veins; if they were cut by accident, the leaf was discarded. Once the cuts were made, the leaf petiole was wrapped with parafilm and inserted through a small rubber stopper that had been perforated using a cork borer. The small rubber stopper was then connected to a tube fitting connected to silicone tubing (ColeParmer, Vernon Hills, IL, USA). The rubber stopper allowed a good seal around the petiole without crushing. We obtained a vacuum tight seal by tightening the tubing around the rubber stopper with zipties and}
sealing the petiole to the exposed end of the rubber stopper using super glue (Loctite 409 glue; Henkel Corp., Los Angeles, CA, USA) with accelerator (Loctite 712 accelerator). Leaves were placed inside a vacuum flask with a thermocouple (Cole-Parmer) connected by a fourway valve to a vacuum pump (Gast) and a high-precision pressure gauge (±0.002 MPa; J4605 Marsh/Bellofram; Marshall Instruments Inc., Anaheim, CA, USA).

We applied five increasing levels of partial vacuum, resulting in absolute pressures between 0.06 and 0.02 MPa, and recorded the flow rate of water entering the leaf from a water source on a balance (±10 μg, models XS205 and AB265; Mettler Toledo, Columbus, OH, USA). The average flow rate of the last 5 min of stability for a given pressure was recorded, along with the temperature. The flow rate was normalized to 25°C correct for the temperature response of the viscosity of water (Weast, 1974; Yang and Tyree, 1993). Leaf xylem hydraulic conductance (K_x) was calculated as the slope of the flow rate vs. pressure, and normalized by leaf area, measured at the end of the experiment with a flatbed scanner. The percent hydraulic resistance in the leaf xylem (%R_x) and outside-xylem (%R_{ox}) were calculated as:

\begin{align}
%R_x &= \frac{1/K_x}{1/K_{leaf}} \times 100 \\
%R_{ox} &= 100 - %R_x
\end{align}

Diurnal measurements of stomatal conductance, photosynthetic rate and whole plant hydraulic conductance as a function of leaf water potential

Diurnal measurements of light-saturated photosynthetic rate (A_{max}) and stomatal conductance (g_s) were performed in the greenhouse on 40 individuals on 10-11 November 2016 from 0900 to 1800 using a portable gas exchange system (LI-6400; LI-Cor, Lincoln, NE, USA). The chamber CO$_2$ was set at 400 ppm and irradiance at 1000 μmol m$^{-2}$ s$^{-1}$ photosynthetically active radiation, and leaf to air vapor pressure deficit was maintained between 0.4 and 0.6 kPa. Measurements were taken after the leaf had equilibrated in the chamber for 10 min; A_{max} and g_s were logged 5 times at 10-sec intervals, and these five measurements were averaged. We checked that 10 min was sufficient equilibration time; $n = 7$ leaves were kept in the chamber for an additional five minutes; no significant differences were found between values taken at 10 vs. those taken at 15 min (paired t-test; $p = 0.08$). To verify g_s measurements, additional measurements were taken using a
porometer on the abaxial side of the leaf (Delta-T Devices; Cambridge, UK) on 10-11 November 2016 from 0900 to 1800. As expected, the g_s values obtained from the LICOR and porometer were within the same range of values and thus were pooled together during the analyses.

At the end of the measurement, the leaf was excised with a razor blade and immediately placed in a sealable bag (Whirl-Pak, Nasco, Fort Atkinson, WI, USA), which had been previously exhaled in, and the bagged leaves were placed in a second bag filled with wet paper towels. After at least 30-min equilibration, Ψ_{leaf} was measured using a pressure chamber as described above.

Whole-plant hydraulic conductance (K_{plant}, mmol m$^{-2}$ s$^{-1}$ MPa$^{-1}$) was estimated under the assumption that soil water potential was fully saturated throughout the day (thus, $\Psi_{\text{soil}} = 0$ MPa). Though we did not directly measure Ψ_{soil}, plants were well-watered and soil was always moist. Thus, K_{plant} was determined from the stomatal conductance obtained from the porometer data described above (measurements performed under ambient light irradiance), ambient VPD at the time of measurement, and leaf water potential:

$$K_{\text{plant}} = \frac{g_s \times \text{VPD}}{\Psi_{\text{soil}} - \Psi_{\text{leaf}}}$$

X-ray micro-computed tomography

To visualize leaf vein xylem embolism and tissue shrinkage, we used X-ray micro-computed tomography (microCT) at the synchrotron at the Advanced Light Source (ALS) in Berkeley, California (Beamline 8.3.2). We imaged the xylem within the midrib and lamina tissues in 18 leaves of a range of leaf water potential from 9 individuals in February 2016 at 1.27-μm resolution. Three additional individuals were further scanned in November 2016 at a higher resolution of 0.638 μm to check for potential collapse in xylem conduits of the midrib. Arabidopsis individuals grown as described above were transported as carry-on in a plane to ALS. Individuals were fully rehydrated at the start of the experiment, and whole plants were removed from the soil and dehydrated on the bench for different times to obtain a range of water potentials, and equilibrated in double-sealed plastic bags for 30 min, after which two leaves were excised to obtain initial leaf water potential. Two of the leaves remaining attached to the plant were juxtaposed within a styrofoam holder and 0.653-0.869 mm length scans were made of their midrib and surrounding lamina at the center of each leaf. A small piece of copper wire was attached at the center of the
leaves to help center the samples for scanning. Kapton tape (DuPont, Wilmington, DE, USA) was used to tape the leaves and the copper wire to the styrofoam holder to minimize sample movement during the scan. The styrofoam with the sample enclosed was placed in a Plexiglass cylinder, attached to a custom-built aluminium sample holder mounted on an air-bearing stage, and wet paper towels were placed above the sample in the Plexiglass cylinder to minimize evaporation during the measurement. At the end of the measurement, final leaf water potential was recorded and leaf areas were measured. No significant differences in water potential before and after the measurement were observed (paired \(t \)-test; \(p = 0.70 \); \(n = 8 \)). Scans were made at 20-23 keV in the synchrotron X-ray beam, and rotated \(180^\circ \) with the instrument to enable visualization of the full 3D internal structure of the leaf. Scans took 5-10 min to complete depending on the scan area selected. Three-dimensional volume renderings were made using the AVIZO 8.1.1 software (VSG Inc., Burlington, MA, USA), and used to count the number of embolized conduits in the entire sample and different vein orders. For the four samples that showed embolism, we measured the length of the embolized conduit and the widths of both conduit axes at three locations along the sample length. We also visualized for each section the water-filled conduits within the midrib and secondary veins to observe any potential deformation or collapse.

Using ImageJ software (version 1.46r; National Institutes of Health), we measured lamina tissue and cell dimensions on three cross-sectional images randomly selected in the middle of each sample. For each image, we measured thickness of the lamina and of each tissue, i.e., the abaxial and adaxial epidermises including the cuticle, and the palisade and spongy mesophyll, at three locations within the sample. We also measured the area, perimeter and diameters as well as the \% intercellular airspace of palisade and spongy mesophyll cells.

Drought tolerance traits

The leaf turgor loss point, osmotic potential at full turgor, relative water content at turgor loss point and modulus of elasticity were calculated from a pressure-volume curve constructed using 29 leaves from 20 individuals previously rehydrated overnight (Supplemental Figure S3). Initial leaf mass was obtained for each single leaf before dehydration to a range of \(\Psi \) \(_{leaf} \). Leaf water potentials were measured with a pressure chamber after 30 min of equilibration in bags with high humidity, after which the leaf mass was measured again, along with leaf area, before it was placed in a drying
oven at 70°C and measured for dry mass after 72 hours. Pressure-volume curve parameters were obtained following standard protocols (Sack and PrometheusWiki, 2010).

We measured the minimum epidermal conductance (=cuticular plus residual stomatal conductance; \(g_{\text{min}} \)) on nine mature leaves from nine individuals in June 2016 by following a standard protocol (Sack et al., 2010). Individual leaves were rehydrated covered in plastic in the laboratory the night before measurements. The next day, nine leaves excised, their cut petioles were sealed with wax, and their fresh mass and leaf area were measured, before dehydration for an hour taped to a fishing line above a fan, to ensure stomatal closure. Leaves were then repeatedly taken off the fan and bagged and measured for mass every 20 min. After eight measurements were obtained for a given leaf, its area was measured again. The \(g_{\text{min}} \) was calculated as the slope of mass over time divided by the average mole fraction vapor pressure deficit (VPD) during the measurement and normalized by the average of the initial and final leaf area given shrinkage with dehydration during measurement. VPD was calculated from the temperature and relative humidity measurements obtained from a weather station (HOBO Micro Station with Smart Sensors, Onset, Bourne, MA, USA). Finally, each individual leaf was dried in an oven at 70°C for three days, and dry mass and area were obtained to calculate leaf dry mass per hydrated area (\(LMA; \) in g m\(^{-2}\)) and the percent area shrinkage in the dried leaf relative to the hydrated leaf (\(PLA_{\text{dry}}; \%)\).

Leaf anatomy

Data for leaf venation and leaf cross-sectional anatomy of Col-0 to aid with interpretation of microCT images were obtained from a previous study (Caringella et al., 2015).

To visualize xylem conduit walls, transmitted electron microscopy (TEM) was performed on three leaves from three Col-0 individuals in Germany. Small samples (ca. 2 mm wide and 8 mm long) from leaf midribs (and surrounding mesophyll) were cut under water and fixed in glutaraldehyde (2.5% glutaraldehyde, 0.1 mol phosphate, 1% saccharose, ph 7.3) overnight. After being washed in phosphate buffer and post-fixed with 2% OsO\(_4\), samples were dehydrated in a series of propanol solutions (30%, 50%, 70%, 90% and three times 100%). Samples were finally immersed in 1.2-propylenoxide (CAS-Nr. 75.56-9, Fontenay-sous-Bois, France) and gradually embedded in Epon resin (Sigma-Aldrich, Steihneim, Germany) and polymerized at 60°C for 48 h. Ultra-thin sections (<90 nm thick) were made with a Leica Ultracut UTC microtome (Leica Microsystems GmbH, Wetzlar, Germany) and placed on copper slot grids). Observations were
made using a JEOL 1400 TEM (JEOL, Tokyo, Japan) at an accelerating voltage of 120 kV. Images were taken with a digital camera (Soft Imagign System, Münster, Germany).

Modelling of hydraulic function across scales from tissues to whole plant

We applied a framework of four models across scales to compute the mechanisms underlying K_{leaf} decline inside and outside the xylem, the causal role of K_{leaf} decline in driving stomatal closure, and the implications for gas exchange under simulated drought regimes (Table 1).

We first estimated the causal importance of mechanistic drivers of K_{leaf} decline using spatially explicit models of the leaf veins (K_{LEAF}; Cochard et al., 2004b; Scoffoni et al., 2017b) and outside-xylem pathways (MOFLO 2.0; Buckley et al., 2017a). Using K_{LEAF}, we tested whether xylem embolism and/or conduit collapse could explain the observed decline in K_{leaf}. We first tested for the impact of the embolisms observed with microCT imaging in the midrib and secondary veins on the xylem hydraulic conductance (K_x) and ultimately K_{leaf} (see Supplemental Methods for more information on model parameterization; Supplemental Table S2). We tested the potential effect of the collapse of tertiary and minor vein conduits on K_x under two scenarios: (1) a “realistic” impact of conduit collapse on conduit conductivity (13% decline in tertiary and minor vein conductivity, similar to that observed in *Quercus rubra* at turgor loss point by Zhang et al., 2016), and (2) a more severe conduit collapse scenario which would induce 50% decline in tertiary and minor vein conduit conductivity (see Supplemental Methods). Using MOFLO 2.0, we investigated the potential drivers of decline in outside-xylem hydraulic conductance with dehydration. We simulated the impact of an 80% decline in cell membrane permeability, and/or decline in cell-to-cell liquid phase hydraulic connectivity given the anatomical changes due to cell shrinkage at -0.5 MPa under different scenarios: (1) with or without an apoplastic barrier to liquid-phase water transport across the bundle sheath, (2) under either no light or with an irradiance of 600 μmol m$^{-2}$ s$^{-1}$ photosynthetically active radiation to clarify a potential role of transdermal temperature gradients (Supplemental Methods; Supplemental Table S2).

We then quantified the direct influence of K_{leaf} decline on g_s decline with dehydration, using a partitioning approach. We first considered the empirical maximum likelihood functions relating K_{leaf} and g_s to leaf water potential:

\[g_s = -451 \times |\Psi_{\text{leaf}}| + 339 \]
\(K_{\text{leaf}} = 6.83 + 81.4 \exp(-7.56 \times |\Psi_{\text{leaf}}|) \)

\(\Psi_{\text{leaf}} \) is in turn a function of \(g_s, K_{\text{leaf}}, \) soil water potential (\(\Psi_{\text{soil}} \)) and the water vapor mole fraction gradient (\(\Delta w \)):

\((5) \quad \Psi_{\text{leaf}} = \Psi_{\text{soil}} - \Delta w \frac{g_s}{K_{\text{leaf}}} \)

As \(\Psi_{\text{leaf}} \) declines during leaf dehydration, the resulting declines in \(g_s \) and \(K_{\text{leaf}} \) lead to changes in their ratio, \(g_s/K_{\text{leaf}} \). If \(K_{\text{leaf}} \) declines more rapidly than \(g_s \) with \(\Psi_{\text{leaf}} \), such that the ratio \(g_s/K_{\text{leaf}} \) increases, the decline in \(\Psi_{\text{leaf}} \) will be amplified, and consequently so will the decline in \(g_s \) itself. Therefore, \(K_{\text{leaf}} \) decline with dehydration would contribute to stomatal closure. The fraction of \(g_s \) decline with \(\Psi_{\text{leaf}} \) that can be attributed to \(K_{\text{leaf}} \) decline, \(F \), is

\((6) \quad F = \frac{\partial g_s}{\partial K_{\text{leaf}}} \frac{\partial K_{\text{leaf}}}{\partial \Psi_{\text{leaf}}} \frac{\partial \Psi_{\text{leaf}}}{\partial g_s} \)

where the partial derivative in the numerator is the sensitivity of \(g_s \) to \(\Psi_{\text{leaf}} \) with \(\Psi_{\text{soil}} \) and \(\Delta w \) held constant (1.5 kPa). That partial derivative is given by

\((7) \quad \frac{\partial g_s}{\partial K_{\text{leaf}}} = \frac{\partial g_s}{\partial \Psi_{\text{leaf}}} \frac{\partial \Psi_{\text{leaf}}}{\partial K_{\text{leaf}}} = \frac{\partial g_s}{\partial \Psi_{\text{leaf}}} \left[-\Delta w \left(\frac{1}{K_{\text{leaf}}} \frac{\partial g_s}{\partial K_{\text{leaf}}} - \frac{g_s}{K_{\text{leaf}}^2} \right) \right] \)

Solving for \(\partial g_s/\partial K_{\text{leaf}} \) gives

\((8) \quad \frac{\partial g_s}{\partial K_{\text{leaf}}} = \frac{\partial g_s}{\partial \Psi_{\text{leaf}}} g_s \Delta w} + \frac{\partial g_s}{\partial \Psi_{\text{leaf}}} \frac{g_s}{K_{\text{leaf}}} \)

\((9) \quad \frac{\partial g_s}{\partial K_{\text{leaf}}} = \frac{\partial g_s}{\partial \Psi_{\text{leaf}}} \frac{g_s}{\Delta w} + \frac{\partial g_s}{\partial \Psi_{\text{leaf}}} \frac{g_s}{K_{\text{leaf}}} \)

Combining 7 and 9 gives \(F \) as

\((10) \quad F = \frac{\frac{\partial g_s}{\partial \Psi_{\text{leaf}}} g_s}{\frac{\partial g_s}{\partial \Psi_{\text{leaf}}} \frac{g_s}{\Delta w} + \frac{g_s}{K_{\text{leaf}}} \frac{g_s}{\Delta w}} \)

Finally, using a simplified discrete-time soil–plant hydraulic model (SurEau; Martin-StPaul et al., 2017), we estimated the influence of \(K_{\text{leaf}} \) decline on stomatal closure under varying
simulations of soil and atmospheric drought. We simulated transpiration, stomatal conductance, cumulative photosynthetic rate, cumulative water-use efficiency, water potential and the percent loss of xylem hydraulic conductance (PLC) daily and during the course of soil drying until plant death (i.e., PLC = 100%). We performed these simulations following four different scenarios: (1) *K*\textsubscript{leaf} and *K*\textsubscript{root} were both vulnerable to dehydration prior to turgor loss point (using the function of *K*\textsubscript{leaf} vs. *Ψ*\textsubscript{leaf} measured with the EFM, and the vulnerability of *K*\textsubscript{root} obtained from that of *K*\textsubscript{leaf} and *K*\textsubscript{plant}, assuming no stem resistance in Arabidopsis; Supplemental Figure S4); (2) *K*\textsubscript{leaf} was vulnerable but not *K*\textsubscript{root} (*K*\textsubscript{root} was kept constant until xylem embolism occurred in the root); (3) *K*\textsubscript{root} was vulnerable but not *K*\textsubscript{leaf} (*K*\textsubscript{leaf} was kept constant until xylem embolism occurred in the leaf); and (4) neither *K*\textsubscript{leaf} nor *K*\textsubscript{root} were vulnerable to dehydration (i.e., both *K*\textsubscript{leaf} and *K*\textsubscript{root} were kept at constant values until xylem embolism occurred) (Supplemental Methods; Supplemental Table S3).

Statistics

We selected functions for the responses of *K*\textsubscript{plant}, *K*\textsubscript{leaf}, *g*\textsubscript{s} and *A*\textsubscript{max} to *Ψ*\textsubscript{leaf} using a maximum likelihood framework (Burnham and Anderson, 2002; Sack et al., 2006). For the *g*\textsubscript{s} and *A*\textsubscript{max} curve fitting, extremely low values at the beginning or end of the day when stomata were shut in well-hydrated leaves (*Ψ*\textsubscript{leaf} > -0.01 MPa) were discarded, and likely represented the effects of the mechanical advantage of epidermal cells preventing stomatal opening in turgid leaves (Guyot et al., 2012); these points represented 3/63 and 2/26 of the points for *g*\textsubscript{s} and *A*\textsubscript{max} respectively. We selected the maximum likelihood model using the optim function in R 3.4.1 (http://www.r-project.org/). We fitted four types of functions to the curves, as previously used in the literature (Scoffoni et al., 2012), where *Y* = *K*\textsubscript{leaf}, *A*\textsubscript{area} or *g*\textsubscript{s}, and *Ψ*\textsubscript{leaf} is leaf water potential: linear (*Y* = *a* * *Ψ*\textsubscript{leaf} + *y*\textsubscript{0}), two-parameter sigmoidal (*Y* = *a* / (1 + *e*\textsuperscript{(-(*Ψ*\textsubscript{leaf} - *x*\textsubscript{0})/*b*)})), logistic (*Y* = *a* / (1 + (*Ψ*\textsubscript{leaf} / *x*\textsubscript{0})*b*)), and exponential (*Y* = *y*\textsubscript{0} + *a**b* * *e*\textsuperscript{-(*Ψ*\textsubscript{leaf})*}). We estimated the maximum *Y* value by extrapolating to *Ψ*\textsubscript{leaf} = 0 and, as indices of decline with dehydration, the *Ψ*\textsubscript{leaf} at which maximum *Y* values decreased by 50% and 95%. Because the best-fit function for the *K*\textsubscript{leaf} vulnerability curve was exponential and the *Y* value at *Ψ*\textsubscript{leaf} = 0 was extrapolated to a very high unrealistic value, we also estimated the maximum *K*\textsubscript{leaf} by averaging all points above -0.1 MPa (*K*\textsubscript{max}), as has been typically done in the literature (i.e., Sack et al., 2003; Nardini et al., 2005a; Brodribb and Jordan, 2008; Scoffoni et al., 2008; Scoffoni et al., 2015).
To test for an effect of light on K_{leaf}, we selected the best-fit function for the response of K_{leaf} to Ψ_{leaf}, combining data for laboratory irradiance and high irradiance treatments, using a maximum-likelihood framework as explained above. We then calculated the residual variation for each leaf, subtracting the measured K_{leaf} (and irradiance) from the predicted K_{leaf} at the given Ψ_{leaf}, based on the best fit. We then performed a t-test on the residuals obtained for the high vs. low irradiance leaves across the entire range of Ψ_{leaf}, as well as just for points above turgor loss point, and for well-hydrated leaves (above -0.2MPa).

To determine the contribution of each correlated predictor variables (Time, PAR, Temperature, VPD, Ψ_{leaf}) to the observed variation in g_s diurnally, we applied independent effects analysis (Murray and Conner, 2009) using the hier.part function in R.3.4.1.

Acknowledgements
We thank Weimin Dang, Dula Parkinson, and Jessica Smith for technical assistance, and the University of California, Los Angeles, Plant Growth Facility and the Advanced Light Source in Berkeley, California (Beamline 8.3.2). This work was supported by the U.S. National Science Foundation (award nos. 1457279 and 1557906), a Humboldt Research Postdoctoral Fellowship, a CAPES/Brazil Fellowship, and the International Wheat Yield Partnership. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract no. DE-AC02-05CH11231.

Figure captions
Figure 1. Decline of leaf hydraulic conductance (K_{leaf}) measured under high (>1000 μmol photons m$^{-2}$ s$^{-1}$) or low (< 3 μmol photons m$^{-2}$ s$^{-1}$) irradiance. The maximum likelihood function is shown for K_{leaf} vulnerability acclimated under high light ($K_{\text{leaf}} = 6.83 + 81.4 \exp(-7.56 \times |\Psi_{\text{leaf}}|)$), and low light ($K_{\text{leaf}} = 8.98 + 84.2 \exp(-13.2 \times |\Psi_{\text{leaf}}|)$). The dashed line represents the water potential at 50% loss of K_{leaf} (similar in both treatments).

Figure 2. Plant hydraulic and gas exchange response to dehydration in Arabidopsis. Decline of the whole plant hydraulic conductance (K_{plant}; A), stomatal conductance (g_s; B) and light-saturated photosynthetic rate (A_{area}; C) with dehydration. Each point represents a different measured leaf. K_{plant} was obtained from the porometer data by dividing transpiration by leaf
water potential (assuming soil water potential was at full saturation). The black fitted line in each pannel is the maximum likelihood function (exponential for $K_{\text{plant}} = 2.0 + 91.1 \exp(-7.75 \times |\Psi_{\text{leaf}}|)$; linear for $g_s = 339 - 451 \times |\Psi_{\text{leaf}}|$, and $A_{\text{area}} = 14.4 - 19.2 \times |\Psi_{\text{leaf}}|$). The dotted grey line is the leaf water potential (Ψ_{leaf}) at 50% loss of maximum K_{plant}, g_s or A_{area}. Because trait values above -0.1 MPa were especially low (white circles), likely representing stomatal closure at those high water potentials (see Methods), we did not include these points in the line fitting.

Figure 3. Lack of embolism observed in midrib conduits of *Arabidopsis thaliana* (Col-0) across levels of dehydration as revealed by in vivo images of leaf midribs subjected to progressive dehydration using micro-computed tomography (A-C). Water-filled cells appear in light grey in microCT. If air-filled (i.e., embolized) conduits were present, they would appear as black in the xylem portion of the midrib. There was no embolism, as shown in these images by the red arrows pointing at the entirely light grey midrib xylem. The leaf water potential (Ψ_{leaf}) has been provided for each image. The inset in (A) represents a leaf midrib cross-section imaged under light microscopy, with the red arrow pointing to the xylem tissue (dark blue conduits).

Figure 4. Rare embolisms were observed in a few individual leaves. In two samples, an embolized conduit was observed in the midrib; it continued into a secondary vein (A, F; the embolized conduits are depicted in yellow). The embolized conduit in the midrib and secondary vein can be seen in cross-sections (B, D, G, I) and longitudinal sections of the microCT scan (C, E, H, J). The arrows point to the embolized conduit (appearing as black in the microCT image). Because of the two dimensionalities of these sections, embolism in the midrib and secondary vein might appear disconnected (C, E). Note that while the embolism was present in only one conduit per cross-sectional image, multiple conduits spanned the length of the midrib and secondary vein (as can be observed in K, where two conduits can be seen connected to one another). Most likely, a first conduit in the midrib embolized, and all the conduits directly connected to that one upstream embolized after. In one sample, an embolized conduit was observed isolated in the secondary vein (L-N), while in another sample, an embolized conduit was observed spanning the midrib length (O-Q).
Figure 5. Results from simulations using a spatially explicit model of leaf outside-xylem water to test for potential drivers of the decline in K_{ox} in dehydrating leaves transport (MOFLO 2.0, see Table 1 and Methods). The K_{ox} was first computed based on the decline of observed cell size and air space alone (grey bars), which resulted in an increase in K_{ox} (negative percent loss of K_{ox}; mainly due to shortening of pathways from the veins to stomata). We then modelled K_{ox} decline according to three scenarios (though always including the effect of tissue dimensional changes): an 80% decline at -0.5MPa in (1) cell connectivity (red bars), (2) cell membrane permeability (blue bars), and (3) cell wall thickness (black bars). All simulations were run with (Ap; darker color) or without an apoplastic barrier (No Ap; lighter color) at the bundle sheath cells. The yellow star on the x-axis represents the % observed K_{leaf} decline at -0.5MPa (measured with the evaporative flux method, see Methods).

Figure 6. Model simulations mapping the contribution of the decline of leaf hydraulic conductance (K_{leaf}) decline to that of stomatal conductance (g_s) with dehydration (Table 1).

Figure 7. Daily simulated patterns of stomatal conductance (A), leaf water potential (B), cumulative CO$_2$ assimilation (C) and the percent loss of leaf xylem hydraulic conductance (D) during the progression of a simulated soil drought (SurEau Model, see Table 1 and Methods). Four scenarios were modelled: (1) both leaf hydraulic conductance (K_{leaf}) and root hydraulic conductance (K_{root}) were vulnerable to dehydration prior to turgor loss point (yellow lines), (2) K_{leaf} was vulnerable, but not K_{root} (red lines), 3) K_{root} was vulnerable, but not K_{leaf} (light blue lines), or (4) neither K_{leaf} nor K_{root} was vulnerable (dark blue lines). The inset in (C) shows cumulative water-use efficiency (WUE; calculated as cumulative CO$_2$ assimilation (A) over total transpiration rate (E)) over time. Scenarios including a vulnerable K_{leaf} showed leaves that showed highest water-use efficiency, cumulative CO$_2$ assimilation and survived longer under drought conditions.

Figure 8. Transmitted-electron microscopy of *Arabidopsis thaliana* (Col-0) midrib cross-sections. In A, the entire xylem portion of the midrib can be seen. Black arrows point to the lack of secondary lignified wall around xylem conduits. These long primary wall sections can be observed in more detail in B. The white arrow points to a lignified portion of the secondary
xylem wall. We hypothesize that the xylem resistance through these deeply helicoidal xylem conduits is greatly reduced, as unlignified primary cells effectively work as one large pit membrane.

Supplemental Table and Figure captions

Supplemental Table S1. K_LEAF simulation inputs
Supplemental Table S2. Model inputs and simulation results from MOFLO 2.0.
Supplemental Table S3. SurEau inputs
Supplemental Figure S1. External environmental drivers of stomatal conductance measured diurnally in a greenhouse with a porometer.
Supplemental Figure S2. Leaf water potential is the main driver of observed diurnal variation in stomatal conductance.
Supplemental Figure S3. Pressure-volume curve for Arabidopsis thaliana (Col-0).
Supplemental Figure S4. Vulnerability curve of the plant (K_{plant}; brown), leaf (K_{leaf}; green) and root (K_{root}; yellow) hydraulic conductance.
Table 1. Modelling framework across scales to determine the underlying mechanisms linking K_{leaf} decline to gas exchange. Symbols:

A_{area}= leaf photosynthetic rate; g_{min}= minimum epidermal conductance; g_{max}= maximum stomatal conductance; g_s= stomatal conductance; K_{leaf}= leaf hydraulic conductance; K_s= leaf xylem hydraulic conductance; K_{ox}= leaf outside-xylem hydraulic conductance; PLC= percent loss of hydraulic conductance; VPD= vapor pressure deficit; Ψ_{leaf}= leaf water potential.

<table>
<thead>
<tr>
<th>Model</th>
<th>Purpose</th>
<th>Input</th>
<th>Output</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_LEAF (Cochard et al., 2004; Scoffoni et al., 2017)</td>
<td>Model the influence of xylem embolism and potential conduit collapse on K_s and K_{leaf}</td>
<td>Leaf size, number of secondary veins and theoretical conductivities from the different veins orders at (1) at full turgor, and after accounting (2) for the decline caused by observed embolism in midrib and/or secondary veins, and (3) for the decline potentially caused by collapsed xylem conduits of tertiary and higher order veins (under a “realistic” collapsed scenario as observed in an oak species (Zhang et al., 2016) which caused 13% PLC, and a more severe scenario—causing 50% PLC)</td>
<td>Leaf xylem hydraulic conductance</td>
<td>Neither embolism nor xylem conduit collapse caused a decline in K_s substantial enough to explain the observed decline in K_{leaf}.</td>
</tr>
<tr>
<td>MOFLO 2.0 (Buckley et al., 2017)</td>
<td>Model the influence of changes in outside-xylem pathways on K_{ox} and K_{leaf}</td>
<td>Cell shrinkage and % intercellular airspace at -0.5MPa obtained from microCT, stomatal conductance (abaxial and adaxial), vapor pressure deficit and bulk leaf temperature. Simulations were performed under no light or 600 μmol m$^{-2}$ s$^{-1}$ photosynthetically active radiation, with or without an apoplastic barrier at the bundle sheath, and with or without an 80% decline in cell membrane permeability and/or cell connectivity.</td>
<td>Leaf outside-xylem hydraulic conductance</td>
<td>Reduction of cell membrane permeability in the context of an apoplastic barrier would account for most of the K_{leaf} decline observed at -0.5MPa. Temperature gradients through the leaf due to irradiance had little impact on K_{ox}.</td>
</tr>
<tr>
<td>Marginal contribution of K decline (refined from Rodriguez-Dominguez et al., 2016)</td>
<td>Quantify the influence of K_{leaf} decline on g_s decline</td>
<td>Parameters from the maximum likelihood function of g_s and K_{leaf} vs. Ψ_{leaf}, VPD set at a constant value (1.5 kPa), and a computed range of % g_s decline (0 to 100% decline in g_s with Ψ_{leaf}).</td>
<td>Contribution of K_{leaf} decline to g_s decline with dehydration.</td>
<td>K_{leaf} decline explains most of the changes in g_s during mild to moderate dehydration.</td>
</tr>
<tr>
<td>SurEau (Martin-StPaul et al., 2017)</td>
<td>Quantify the influence of K_{leaf} decline on gas exchange in whole plant context during drought</td>
<td>Parameters from the maximum likelihood function of K_{leaf} vs. Ψ_{leaf}, parameters from the function of K_{leaf} vs. water potential, g_{min}, g_{max}. Farquhar’s model inputs, PAR, air temperature, air humidity, time of day, transpiration under well-hydrated conditions, soil volume.</td>
<td>Soil water reserve, water potentials, transpiration rate, g_{ox}, A_{area}, PLC.</td>
<td>Decline in K_{leaf} causes leaf water potential to drop, which in turn causes both g_s and A_{area} to decline under increasing VPD and decreasing soil water potential.</td>
</tr>
</tbody>
</table>
Table 2. Mean ± standard error for the physiological and anatomical traits measured for *Arabidopsis thaliana* (col-0). Symbols: K_{max}: maximum leaf hydraulic conductance; K_r: leaf xylem hydraulic conductance; $\%R_{\text{max}}$: percent resistance outside the leaf xylem; g_s: stomatal conductance; A_{max}: maximum light saturated photosynthetic rate; P_{50}, P_{88}, and P_{95}: leaf water potential at 50, 88 ns 95% decline in a given trait.

<table>
<thead>
<tr>
<th>Trait</th>
<th>Units</th>
<th>Col-0</th>
<th>Hydraulics and gas exchange</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_{max}</td>
<td>mmol m$^{-2}$ s$^{-1}$ MPa$^{-1}$</td>
<td>59.9 ± 1.76</td>
<td></td>
</tr>
<tr>
<td>$K_{\text{leaf0.1-0.2MPa}}$</td>
<td>mmol m$^{-2}$ s$^{-1}$ MPa$^{-1}$</td>
<td>33.1 ± 4.55</td>
<td></td>
</tr>
<tr>
<td>K_r</td>
<td>mmol m$^{-2}$ s$^{-1}$ MPa$^{-1}$</td>
<td>138.4 ± 14.5</td>
<td></td>
</tr>
<tr>
<td>$%R_{\text{max}}$</td>
<td>%</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>$%R_{\text{leaf}}$</td>
<td>%</td>
<td>54.4</td>
<td></td>
</tr>
<tr>
<td>g_s</td>
<td>mmol m$^{-2}$ s$^{-1}$</td>
<td>339 ± 24.9</td>
<td></td>
</tr>
<tr>
<td>A_{max}</td>
<td>μmol m$^{-2}$ s$^{-1}$</td>
<td>14.4 ± 2.72</td>
<td></td>
</tr>
<tr>
<td>$K_{\text{leaf}} P_{50}$</td>
<td>MPa</td>
<td>-0.17</td>
<td></td>
</tr>
<tr>
<td>$g_s P_{50}$</td>
<td>MPa</td>
<td>-0.38</td>
<td></td>
</tr>
<tr>
<td>$A_{\text{area}} P_{50}$</td>
<td>MPa</td>
<td>-0.37</td>
<td></td>
</tr>
<tr>
<td>$K_{\text{leaf}} P_{88}$</td>
<td>MPa</td>
<td>-0.72</td>
<td></td>
</tr>
<tr>
<td>$g_s P_{95}$</td>
<td>MPa</td>
<td>-0.71</td>
<td></td>
</tr>
<tr>
<td>$A_{\text{area}} P_{95}$</td>
<td>MPa</td>
<td>-0.71</td>
<td></td>
</tr>
<tr>
<td>Drought-tolerance traits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turgor loss point (TLP)</td>
<td>MPa</td>
<td>-0.73</td>
<td></td>
</tr>
<tr>
<td>Osmotic potential at full turgor (π_o)</td>
<td>MPa</td>
<td>-0.63</td>
<td></td>
</tr>
<tr>
<td>Modulus of elasticity (ϵ)</td>
<td>MPa</td>
<td>5.70</td>
<td></td>
</tr>
<tr>
<td>Relative water content at turgor loss point (RWC_{TLP})</td>
<td>%</td>
<td>84.1</td>
<td></td>
</tr>
<tr>
<td>Leaf mass per unit leaf area (LMA)</td>
<td>g m$^{-2}$</td>
<td>13.6 ± 0.89</td>
<td></td>
</tr>
<tr>
<td>Percent loss of area in a dry leaf (PLA_{dry})</td>
<td>%</td>
<td>57.9 ± 3.05</td>
<td></td>
</tr>
<tr>
<td>Minimum epidermal conductance (g_{min})</td>
<td>mmol m$^{-2}$ s$^{-1}$</td>
<td>18.6 ± 1.33</td>
<td></td>
</tr>
<tr>
<td>Leaf anatomical traits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance from vein to lower epidermis (VED)</td>
<td>mm</td>
<td>0.067 ± 0.002</td>
<td></td>
</tr>
<tr>
<td>Total vein length per area (VLA)</td>
<td>mm mm$^{-2}$</td>
<td>3.04 ± 0.08</td>
<td></td>
</tr>
<tr>
<td>Minor vein length per area (minor VLA)</td>
<td>mm mm$^{-2}$</td>
<td>1.79 ± 0.08</td>
<td></td>
</tr>
<tr>
<td>Major vein length per area (major VLA)</td>
<td>mm mm$^{-2}$</td>
<td>1.25 ± 0.05</td>
<td></td>
</tr>
<tr>
<td>K_t, midrib per leaf area</td>
<td>mmol m$^{-1}$ s$^{-1}$ MPa$^{-1}$</td>
<td>0.27 ± 0.12</td>
<td></td>
</tr>
<tr>
<td>K_t, minor per leaf area</td>
<td>mmol m$^{-1}$ s$^{-1}$ MPa$^{-1}$</td>
<td>0.003 ± 0.0008</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Observations of embolized conduits and dimensions from microCT and their simulated impact on leaf xylem hydraulic conductance using the spatially explicit K_LEAF model. Because we did not have the resolution to determine whether conduit collapse occurs in tertiary and minor veins, two simulations were performed based on minor vein conduit collapse observed in *Quercus rubra* (see Methods). Note that two leaves were imaged at each water potential (22 leaves total); embolism at the four water potentials below were only found in one of the two leaves tested at that water potential.

<table>
<thead>
<tr>
<th>Leaf water potential (MPa)</th>
<th>Number of embolized conduits</th>
<th>Length of embolized conduit (μm)</th>
<th>Diameter of embolized conduit (μm)</th>
<th>Simulated percent loss of xylem hydraulic conductance (%)</th>
<th>Embolism only</th>
<th>Embolism + “realistic” 3°+ vein collapse (13% PLC)</th>
<th>Embolism + “severe” 3°+ vein collapse (50% PLC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>midrib 2° 3°+ midrib 2° 3°+</td>
</tr>
<tr>
<td>-0.06</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-0.08</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-0.13</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>>898</td>
<td>7.3</td>
<td>8.7</td>
<td>7.13</td>
</tr>
<tr>
<td>-0.16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-0.18</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>258; >600</td>
<td>6.2; 5.3</td>
<td>5.2; 3.5</td>
<td>3.96</td>
</tr>
<tr>
<td>-0.45</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>5.2</td>
<td>0.96</td>
</tr>
<tr>
<td>-0.48</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>>850</td>
<td>5.9</td>
<td>-</td>
<td>1.16</td>
</tr>
<tr>
<td>-0.50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>-0.69</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>-0.79</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>-0.87</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>
Literature Cited

Brodribb TJ, Feild TS, Jordan GJ (2007) Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology 144: 1890-1898

Scoffoni et al. Kleaf and gas exchange coordination in Arabidopsis 34

Grubb PJ (1998) A reassessment of the strategies of plants which cope with shortages of resources. Perspectives in Plant Ecology Evolution and Systematics 1: 3-31

Laur J, Hacke UG (2014b) The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa. Plos One 9

Sack L, John GP, Buckley TN (2018) ABA accumulation in dehydrating leaves is associated with decline in cell volume, not turgor pressure. Plant Physiology **176**: 489-495

Sack L, Scoffoni C (2013) Leaf venation: structure, function, development, evolution, ecology and applications in past, present and future. New Phytologist **198**: 938-1000

Sussmilch FC, Brodribb TJ, McAdam SAM (2017) Up-regulation of NCED3 and ABA biosynthesis occur within minutes of a decrease in leaf turgor but AHK1 is not required. Journal of Experimental Botany 68: 2913-2918

Tyree MT, Davis SD, Cochard H (1994) Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction Iawa Journal 15: 335-360

Figure 1. Decline of leaf hydraulic conductance (K_{leaf}) measured under high (>1000 μmol photons m$^{-2}$ s$^{-1}$) or low (< 3 μmol photons m$^{-2}$ s$^{-1}$) irradiance. The maximum likelihood function is shown for K_{leaf} vulnerability acclimated under high light ($K_{\text{leaf}} = 6.83 + 81.4 \exp(-7.56 \times |\Psi_{\text{leaf}}|)$), and low light ($K_{\text{leaf}} = 8.98 + 84.2 \exp(-13.2 \times |\Psi_{\text{leaf}}|)$). The dashed line represents the water potential at 50% loss of K_{leaf} (similar in both treatments).
Figure 2. Plant hydraulic and gas exchange response to dehydration in Arabidopsis. Decline of the whole plant hydraulic conductance (K_{plant}; A), stomatal conductance (g_s; B) and light-saturated photosynthetic rate (A_{area}; C) with dehydration. Each point represents a different measured leaf. K_{plant} was obtained from the porometer data by dividing transpiration by leaf water potential (assuming soil water potential was at full saturation). The black fitted line in each pannel is the maximum likelihood function (exponential for $K_{\text{plant}} = 2.0 + 91.1 \exp(-7.75 \times |\Psi_{\text{leaf}}|)$; linear for $g_s = 339 - 451 \times |\Psi_{\text{leaf}}|$, and $A_{\text{area}} = 14.4 - 19.2 \times |\Psi_{\text{leaf}}|$). The dotted grey line is the leaf water potential (Ψ_{leaf}) at 50% loss of maximum K_{plant}, g_s or A_{area}. Because trait values above -0.1 MPa were especially low (white circles), likely representing stomatal
closure at those high water potentials (see Methods), we did not include these points in the line fitting.
Figure 3. Lack of embolism observed in midrib conduits of Arabidopsis thaliana (Col-0) across levels of dehydration as revealed by in vivo images of leaf midribs subjected to progressive dehydration using micro-computed tomography (A-C). Water-filled cells appear in light grey in microCT. If air-filled (i.e., embolized) conduits were present, they would appear as black in the xylem portion of the midrib. There was no embolism, as shown in these images by the red arrows pointing at the entirely light grey midrib xylem. The leaf water potential (Ψ_{leaf}) has been provided for each image. The inset in (A) represents a leaf midrib cross-section imaged under light microscopy, with the red arrow pointing to the xylem tissue (dark blue conduits).
Figure 4. Rare embolisms were observed in a few individual leaves. In two samples, an embolized conduit was observed in the midrib; it continued into a secondary vein (A, F; the
embolized conduits are depicted in yellow). The embolized conduit in the midrib and secondary vein can be seen in cross-sections (B, D, G, I) and longitudinal sections of the microCT scan (C, E, H, J). The arrows point to the embolized conduit (appearing as black in the microCT image). Because of the two dimensionalities of these sections, embolism in the midrib and secondary vein might appear disconnected (C, E). Note that while the embolism was present in only one conduit per cross-sectional image, multiple conduits spanned the length of the midrib and secondary vein (as can be observed in K, where two conduits can be seen connected to one another). Most likely, a first conduit in the midrib embolized, and all the conduits directly connected to that one upstream embolized after. In one sample, an embolized conduit was observed isolated in the secondary vein (L-N), while in another sample, an embolized conduit was observed spanning the midrib length (O-Q).
Figure 5. Results from simulations using a spatially explicit model of leaf outside-xylem water to test for potential drivers of the decline in K_{ox} in dehydrating leaves transport (MOFLO 2.0, see Table 1 and Methods). The K_{ox} was first computed based on the decline of observed cell size and air space alone (grey bars), which resulted in an increase in K_{ox} (negative percent loss of K_{ox}; mainly due to shortening of pathways from the veins to stomata). We then modelled K_{ox} decline according to three scenarios (though always including the effect of tissue dimensional changes): an 80% decline at -0.5MPa in (1) cell connectivity (red bars), (2) cell membrane permeability (blue bars), and (3) cell wall thickness (black bars). All simulations were run with (Ap; darker color) or without an apoplastic barrier (No Ap; lighter color) at the bundle sheath cells. The yellow star on the x-axis represents the % observed K_{leaf} decline at -0.5MPa (measured with the evaporative flux method, see Methods).
Figure 6. Model simulations mapping the contribution of the decline of leaf hydraulic conductance (K_{leaf}) decline to that of stomatal conductance (g_s) with dehydration (Table 1).
Figure 7. Daily simulated patterns of stomatal conductance (A), leaf water potential (B), cumulative CO$_2$ assimilation (C) and the percent loss of leaf xylem hydraulic conductance (D) during the progression of a simulated soil drought (SurEau Model, see Table 1 and Methods). Four scenarios were modelled: (1) both leaf hydraulic conductance (K_{leaf}) and root hydraulic conductance (K_{root}) were vulnerable to dehydration prior to turgor loss point (yellow lines), (2) K_{leaf} was vulnerable, but not K_{root} (red lines), 3) K_{root} was vulnerable, but not K_{leaf} (light blue lines), or (4) neither K_{leaf} nor K_{root} was vulnerable (dark blue lines). The inset in (C) shows cumulative water-use efficiency (WUE; calculated as cumulative CO$_2$ assimilation (A) over total transpiration rate (E)) over time. Scenarios including a vulnerable K_{leaf} showed leaves that showed highest water-use efficiency, cumulative CO$_2$ assimilation and survived longer under drought conditions.
Figure 8. Transmitted-electron microscopy of *Arabidopsis thaliana* (Col-0) midrib cross-sections. In A, the entire xylem portion of the midrib can be seen. Black arrows point to the lack of secondary lignified wall around xylem conduits. These long primary wall sections can be observed in more detail in B. The white arrow points to a lignified portion of the secondary xylem wall. We hypothesize that the xylem resistance through these deeply helicoidal xylem conduits is greatly reduced, as unlignified primary cells effectively work as one large pit membrane.

Brodribb TJ, Feld TS, Jordan GJ (2007) Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology 144: 1890-1898

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
Downloaded from on October 26, 2018 - Published by www.plantphysiol.org
Copyright © 2018 American Society of Plant Biologists. All rights reserved.

Grubb PJ (1998) A reassessment of the strategies of plants which cope with shortages of resources. Perspectives in Plant Ecology Evolution and Systematics 1: 3-31

Kang Y, Outlaw JWH, Fiore GB, Riddle KA (2007a) Guard cell apoplastic photosynthetic accumulation corresponds to a phloem-loading mechanism. Journal of Experimental Botany 58: 4061-4070

Laur J, Hacke UG (2014b) The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa. Plos One 9

conductances in grapevine under water stress and re-watering. Plant Cell and Environment 36: 828-843

Sack L, John GP, Buckley TN (2018) ABA accumulation in dehydrating leaves is associated with decline in cell volume, not turgor pressure. Plant Physiology 176: 489-495

Tyree MT, Davis SD, Cochard H (1994) Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction Iawa Journal 15: 335-360

 PubMed: Author and Title
 Google Scholar: Author Only Title Only Author and Title

 PubMed: Author and Title
 Google Scholar: Author Only Title Only Author and Title

 PubMed: Author and Title
 Google Scholar: Author Only Title Only Author and Title

 PubMed: Author and Title
 Google Scholar: Author Only Title Only Author and Title